\(\sqrt{x-2013}\) + \(\sqrt{4x-8052}\) =3

giải dùm mình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

\(ĐK:x\ge2013\\ PT\Leftrightarrow\sqrt{x-2013}+2\sqrt{x-2013}=3\\ \Leftrightarrow3\sqrt{x-2013}=3\\ \Leftrightarrow\sqrt{x-2013}=1\Leftrightarrow x-2013=1\\ \Leftrightarrow x=2014\left(tm\right)\)

9 tháng 11 2021

\(\sqrt{x-2013}+\sqrt{4x-8052}=3\)

\(\Leftrightarrow\sqrt{x-2013}+\sqrt{4\left(x-2013\right)}=3\)

\(\Leftrightarrow\sqrt{x-2013}+2\sqrt{x-2013}=3\)

\(\Leftrightarrow3\sqrt{x-2013}=3\)

\(\Leftrightarrow\sqrt{x-2013}=1\)

\(\Leftrightarrow x-2013=1\)

\(\Leftrightarrow x=2014\)

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

14 tháng 6 2017

1 .    \(\sqrt{2+1}\)\(\sqrt{3}\)

   ta có : \(2\)\(3\)\(\Rightarrow\)\(\sqrt{2}\)<\(\sqrt{3}\)\(\Rightarrow\)\(2\)\(\sqrt{3}\)

14 tháng 6 2017

\(\sqrt{3-1}\)\(\sqrt{2}\)

ta có : \(1\)\(2\)\(\Rightarrow\)\(\sqrt{1}\)\(\sqrt{2}\)\(\Rightarrow\)\(1\)\(\sqrt{3}-1\)

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

12 tháng 9 2017

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

5 tháng 10 2017

Bài dễ mà :
a, \(\sqrt{x+5}=x+15 \)
\(x+5=x^2+30x+225\)
\(x^2+29x+220=0\)
\(\left(x+14,5\right)^2+9,75=0\)
pt vô nghiệm

18 tháng 9 2016

a,4\(\sqrt{x+1}\) -3\(\sqrt{x+1}\) =4 suy ra \(\sqrt{x+1}=4\)suy ra x+1=16 và x=15

b. tương tự phần a suy ra \(5\sqrt{x+1}=\sqrt{x-1}\)suy ra \(^{25\left(x+1\right)=x-1}\)suy ra 24x=-26 suy ra x=\(\frac{-13}{12}\)(ko thỏa mãn đk) nên vô nghiệm

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )

27 tháng 10 2019

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)