Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải pt :
1
a. ĐKXĐ : \(x\ge4\)
Ta có :
\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)
\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) (TM ĐKXĐ)
Vậy \(S=\left\{13\right\}\)
b.ĐKXĐ : \(-3\le x\le10\)
Ta có :
\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{1;6\right\}\)
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
b) \(< =>\sqrt{x+1}\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
<=> x=-1
hoặc \(x^2-x+1=x+3\) => \(x^2-2x-2=0...\)
2. \(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\) (2)
\(\Leftrightarrow\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}-\dfrac{7}{\sqrt{x-3}}=0\)
\(\Leftrightarrow\dfrac{\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7}{\sqrt{x-3}}=0\)
\(\Leftrightarrow\sqrt{x^2}-16+\sqrt{\left(x-3\right)\left(x+3\right)}-7=0\)
\(\Leftrightarrow\left|x\right|-16+\sqrt{x^2-9}-7=0\)
\(\Leftrightarrow\left|x\right|-23+\sqrt{x^2-9}=0\)
\(\Leftrightarrow\sqrt{x^2-9}=-\left|x\right|+23\)
\(\Leftrightarrow x^2-9=-\left(-\left|x\right|+23\right)^2\)
\(\Leftrightarrow x^2-9=-\left(-\left|x\right|\right)^2-46\cdot\left|x\right|+529\)
\(\Leftrightarrow x^2-9=\left|x\right|^2-46+\left|x\right|+529\)
\(\Leftrightarrow x^2-9=x^2-46\cdot\left|x\right|+529\)
\(\Leftrightarrow-9=-46\cdot\left|x\right|+529\)
\(\Leftrightarrow46\cdot\left|x\right|=529+9\)
\(\Leftrightarrow49\cdot\left|x\right|=538\)
\(\Leftrightarrow\left|x\right|=\dfrac{269}{23}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{269}{23}\\x=-\dfrac{269}{23}\end{matrix}\right.\)
Sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{269}{23}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{269}{23}\right\}\)
3. sửa đề: \(\sqrt{14-x}=\sqrt{x-4}\sqrt{x-1}\) (3)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{\left(x-4\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-x-4x+4}\)
\(\Leftrightarrow\sqrt{14-x}=\sqrt{x^2-5x+4}\)
\(\Leftrightarrow14-x=x^2-5x+4\)
\(\Leftrightarrow14-x-x^2+5x-4=0\)
\(\Leftrightarrow10+4x-x^2=0\)
\(\Leftrightarrow-x^2+4x+10=0\)
\(\Leftrightarrow x^2-4x-10=0\)
\(\Leftrightarrow x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\cdot1\cdot\left(-10\right)}}{2\cdot1}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{16+40}}{2}\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{56}}{2}\)
\(\Leftrightarrow x=\dfrac{4\pm2\sqrt{14}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4-2\sqrt{14}}{2}\\x=\dfrac{4+2\sqrt{14}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{14}\\x=2-\sqrt{14}\end{matrix}\right.\)
sau khi dùng phép thử ta nhận thấy \(x\ne2-\sqrt{14}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{2+\sqrt{14}\right\}\)
Câu 1:
ĐKXĐ: \(x\geq \frac{1}{2}\)
Ta có: \(2\sqrt{x+3}=x-1+4\sqrt{2x-1}\)
\(\Leftrightarrow (x-1)+4\sqrt{2x-1}-2\sqrt{x+3}=0\)
\(\Leftrightarrow x-1+2(2\sqrt{2x-1}-\sqrt{x+3})=0\)
\(\Leftrightarrow x-1+2.\frac{4(2x-1)-(x+3)}{2\sqrt{2x-1}+\sqrt{x+3}}=0\) (liên hợp)
\(\Leftrightarrow (x-1)+\frac{14(x-1)}{2\sqrt{2x-1}+\sqrt{x+3}}=0\)
\(\Leftrightarrow (x-1)\left(1+\frac{14}{2\sqrt{2x-1}+\sqrt{x+3}}\right)=0\)
Với mọi \(x\geq \frac{1}{2}\) ta luôn có \(1+\frac{14}{2\sqrt{2x-1}+\sqrt{x+3}}>0\). Do đó \(x-1=0\rightarrow x=1\) là nghiệm duy nhất
Câu 2:
ĐKXĐ: \(1\leq x\leq 5\)
Đặt \(\sqrt[4]{x-1}=a; \sqrt[4]{5-x}=b(a,b\geq 0)\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=2\\ a^4+b^4=4\end{matrix}\right.\) \(\Rightarrow a^4+(2-a)^4=4\)
Đặt \(1-a=m\) thì pt trở thành:
\((1-m)^4+(m+1)^4=4\)
\(\Leftrightarrow 2m^4+12m^2+2=4\)
\(\Leftrightarrow m^4+6m^2-1=0\)
\(\Leftrightarrow (m^2+3)^2=10\Rightarrow m^2=\sqrt{10}-3\Rightarrow m=\pm \sqrt{\sqrt{10}-3}\)
\(\Rightarrow a=1\pm \sqrt{\sqrt{10}-3}\)
\(\Rightarrow x=(1\pm \sqrt{\sqrt{10}-3})^4+1\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}-1-\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)+\sqrt{x^3+x^2+x+1}\left(1-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)-\sqrt{x^3+x^2+x+1}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(1-\sqrt{x^3+x^2+x+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=0\\1-\sqrt{x^3+x^2+x+1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x\left(x^2+x+1\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\left(because:x^2+x+1>0with\forall x\right)\end{cases}}\)
Tiếc quá bạn.Mình vừa giải xong x=2