\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}giai~phuong\cdot trinh'giup'lam`theo\cdot thu'tu\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

Đặt \(N=\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\)

\(\Rightarrow N^2=x-1+2\sqrt{x-2}+x-1-2\sqrt{x-2}+2\sqrt{\left(x-1+2\sqrt{x-2}\right)\left(x-1-2\sqrt{x-2}\right)}\)

\(\Leftrightarrow N^2=2x-2+2\sqrt{\left(x-1\right)^2-\left(2\sqrt{x-2}\right)^2}\)

\(\Leftrightarrow N^2=2x-2+2\sqrt{x^2-2x+1-4\left(x-2\right)}\)

\(\Leftrightarrow N^2=2x-2+2\sqrt{x^2-2x+1-4x+8}\)

\(\Leftrightarrow N^2=2x-2+2\sqrt{x^2-6x+9}\)

\(\Leftrightarrow N^2=2x-2+2\sqrt{\left(x-3\right)^2}\)

\(\Leftrightarrow N^2=2x-2+2\left|x-3\right|\)

* Với \(x\ge3\)thì \(N^2=2x-2+2\left(x-3\right)=4x-8=4\left(x-2\right)\Rightarrow N=2\sqrt{x-2}\)

* Với \(2\le x\le4\)thì \(N^2=2x-2-2\left(x-3\right)=4\Rightarrow N=\sqrt{4}=2\)

(Bạn xem thử coi đúng hông nha, và 1 cái k nhá!)

29 tháng 7 2016

cam on ban

ban la vi cuu' tinh cua~ to' 

wow wow

2 tháng 9 2017

câu b đk x>= -1/4

\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)

\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)

\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)

\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)

\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)

\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)

3 tháng 9 2017

bạn ghi cai gì vậy hả. Mình chẳng hiểu gì hết ý

29 tháng 6 2018

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=\left[{}\begin{matrix}\sqrt{x-1}+1+\sqrt{x-1}-1\left(x\ge2\right)\\\sqrt{x-1}+1+1-\sqrt{x-1}\left(1\le x< 2\right)\end{matrix}\right.=\left[{}\begin{matrix}2\sqrt{x-1}\left(x\ge2\right)\\2\left(1\le x< 2\right)\end{matrix}\right.\)

29 tháng 6 2018

Rút gọn

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

24 tháng 9 2018

\(\hept{\begin{cases}a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\\b^2=y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\end{cases}}\)

\(\Rightarrow a^2-b^2=1\)

\(\Rightarrow a^2=1+b^2\)

a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)

b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)

c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)

d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)

e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)