\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)

\(=\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}=\frac{3-\sqrt{5}+3+\sqrt{5}}{2}=3\)

\(\frac{3+\sqrt{3}}{\sqrt{3}+1}-\frac{3-\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}-\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=\sqrt{3}-\sqrt{3}+1-\frac{\sqrt{3}+1}{2}=1+\frac{\sqrt{3}+1}{2}=\frac{3+\sqrt{3}}{2}\)

8 tháng 5 2019

a, \(\sqrt{2}A=\sqrt{10-2\sqrt{3.7}}+\sqrt{10+2\sqrt{3.7}}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)
\(\Rightarrow A=\sqrt{14}\)
b, \(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\frac{\sqrt{5}}{2}=\frac{3\sqrt{5}}{2}\)
c, \(C=\left(1-\sqrt{11}\right)\left(\sqrt{11}+1\right)=1-11=-10\)

d, \(D=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}{2-3}-\frac{\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\)
\(=-2-\sqrt{6}+2-\sqrt{6}=-2\sqrt{6}\)

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\) 12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\) 13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\) 14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\) 15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\) 16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\) 17)...
Đọc tiếp

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)

12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)

13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)

16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)

17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)

18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)

19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)

20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)

21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)

22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)

23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)

24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)

26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)

28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)

29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)

32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)

3
29 tháng 9 2019

undefined

29 tháng 9 2019

undefined

2 tháng 10 2019

undefinedundefined

2 tháng 10 2019

cảm ơn

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

8 tháng 8 2020

c) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)

\(=\sqrt{6}\)

d) Đặt  \(D=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(\Leftrightarrow D^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(\Leftrightarrow D^2=4+2\sqrt{4-3}\)

\(\Leftrightarrow D^2=6\)

\(\Leftrightarrow D=\sqrt{6}\) (Vì D > 0)

e) \(E=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)

\(\Leftrightarrow E^2=\frac{3-\sqrt{5}}{3+\sqrt{5}}+\frac{3+\sqrt{5}}{3-\sqrt{5}}-2\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}\cdot\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)

\(\Leftrightarrow E^2=\frac{9-6\sqrt{5}+5+9+6\sqrt{5}+5}{9-5}-2\sqrt{1}\)

\(\Leftrightarrow E^2=7-2=5\)

\(\Leftrightarrow E=\sqrt{5}\) (Vì E >0)

f) \(\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}\)

\(=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}\)

\(=\frac{2\sqrt{5}}{4}\cdot\frac{1}{\sqrt{5}}\)

\(=\frac{1}{2}\)

16 tháng 7 2016

a/ Bạn ghi nhầm đề rồi

c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)   

     \(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)

       \(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)

       \(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)

        \(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)

         \(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)

f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)

    \(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)

      \(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)

g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)

   \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)

     \(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)

       \(=2007\)

NV
25 tháng 9 2019

\(A=\sqrt{3}+\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\sqrt{3}+\sqrt{3}\left(\sqrt{3}-1\right)=3\)

\(B=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\sqrt{3}-2-\sqrt{3}=-2\)

\(C=\frac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\sqrt{5}-\sqrt{3}\)

\(C=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

\(D=\frac{2}{\left|2-\sqrt{5}\right|}-\frac{2}{\left|2+\sqrt{5}\right|}=\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}=\frac{2\left(\sqrt{5}+2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)

\(D=2\sqrt{5}+4-2\sqrt{5}+4=8\)

\(E=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}-\sqrt{2}=0\)