Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) chắc là nhóm lại thui để sau mk làm:v
b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
Đk: tự lm nhé :v
\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)
\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)
\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)
Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
ĐK: -1 <= x <= 1
Đặt y = \(\sqrt{1-x^2}\)
=> y2 = 1 - x2 (y >= 0)
=> x = \(\sqrt{1-y^2}\)
<=>
x3 + y3 = 2xy
x2 + y2 = 1
<=>
(x + y)3 - 3x2y - 3xy2 = 2xy
(x + y) - 2xy = 1
<=>
(x + y)3 - 3xy(x + y) = 2xy
(x + y) - 2xy = 1
Đặt S = x + y, P = xy
=>
S3 - 3SP = 2P
S - 2P = 1
\(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)
ta lập phương hai vế có
\(x^3=7+\sqrt{\frac{49}{8}}+7-\sqrt{\frac{49}{8}}+3\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}x\)
\(< =>x^3=14+3\sqrt[3]{7^2-\frac{49}{8}}x\)
\(< =>x^3=14+3\sqrt[3]{\frac{343}{8}}x\)
\(< =>x^3=14+3.\frac{7}{2}x\)
\(< =>2x^3-21x-28=0\)
nên
\(fx=\left(2x^3-21x-29\right)^3=\left(2x^3-21x-28-1\right)^3=\left(-1\right)^3=-1\)
Điều kiện x \(\ge\frac{1}{4}\)
Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))
=> x = a2 + \(\frac{1}{4}\)
=> PT <=> 2a2 + \(\frac{1}{2}\)+ \(\sqrt{a^2+\frac{1}{4}+a}\)= 2
<=> \(\sqrt{a^2+\frac{1}{4}+a}\)= \(\frac{3}{2}-2a\)
<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2
<=> 4a4 - 7a2 - a + 2 = 0
<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0
<=> a = 0,5
<=> x = 0,5
ĐK \(x\ne0\)
Chia cả 2 vế cho \(\frac{1}{x}\)ta được
\(\frac{3}{3x-4+\frac{1}{x}}+\frac{13}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x+\frac{1}{x}=y\)
\(\Rightarrow\frac{3}{y-4}+\frac{13}{y+2}=6\)
\(\Leftrightarrow16y-46=6\left(y-4\right)\left(y+2\right)\)
Đến đây tự giải nhé (Phá ngoặc rồi ghép cặp lại)
a, \(\sqrt{8}+\sqrt{18}-\sqrt{\frac{1}{2}}=2\sqrt{2}+3\sqrt{2}-\frac{1}{2}\sqrt{2}\)
\(=\frac{9}{2}\sqrt{2}\)
b, \(\frac{3-\sqrt{3}}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\sqrt{3}-1+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+1\right)\) \(=\frac{2\sqrt{2}-\left(\sqrt{2}+1\right)^2}{\sqrt{2}+1}\)
\(=\frac{2\sqrt{2}-2-2\sqrt{2}-1}{\sqrt{2}+1}=-\frac{2+1}{\sqrt{2}+1}\)
c, PT xác định với mọi x nha!
\(\sqrt{x^2-2x+1}=3\) \(\Rightarrow x^2-2x+1=9\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)
Vậy...
bạn tự kl
nhập PT vào máy tính, sử dụng dầu "=" ô nút CALC.
sau khi nhập xong, nhấn SHIFT,CALC, rồi nhấn dấu =
Ta được x=-1,322875656
ĐK \(x\ge\frac{3}{2}\) hoặc \(x< 1\)
\(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\)
\(\Rightarrow2x-3=2x-2\Leftrightarrow0x=1\)ko có giá trị nào thoả mãn
Chúc học tốt!
Đk \(\orbr{\begin{cases}x\ge\frac{3}{2}\\x< 1\end{cases}}\)
\(\Leftrightarrow\frac{2x-3}{x-1}=4\)\(\Rightarrow2x-3=4x-4\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)TMĐK
Vậy x=1/2
Chúc học tốt! ( sửa lại)