Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a)\)\(A=\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}< \sqrt{91}=B\)
Vậy \(A< B\)
\(b)\)\(A=\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}=B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(A=\frac{3\sqrt{x}+3}{\sqrt{x}-2}=\frac{3\sqrt{x}-6}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=3+\frac{9}{\sqrt{x}-2}\)
Để A nguyên \(\Rightarrow\)\(9⋮\sqrt{x}-2\)\(\Rightarrow\)\(\sqrt{x}-2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
\(\sqrt{x}-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(x\) | \(9\) | \(1\) | \(25\) | \(\varnothing\) | \(121\) | \(\varnothing\) |
Vậy để A nguyên thì \(x\in\left\{1;9;25;121\right\}\)
Mấy câu còn lại tương tự
Chúc bạn học tốt ~
a) |x - 1,7| = 2,3
Xét 2 trường hợp:
TH1: x - 1,7 = -2,3
x = -2,3 +1,7
x = -0,6
TH2: x - 1,7 = 2,3
x = 2,3 + 1,7
x = 4
Vậy: Tự kl :<
\(a,\left|3x-1\right|=\left|5-2x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)
b,\(\left|2x-1\right|+x=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)
c.\(A=0,75-\left|x-3,2\right|\)
Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)
Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)
Vậy Max A = 0,75 khi x = 3,2
\(d,B=2.\left|x+1,5\right|-3,2\)
Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2
Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)
\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)
Vậy Min B = -3,2 khi x = -1,5
\(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\cdot\left(x+2\right)=2\cdot\left(y+3\right)\Leftrightarrow3x+6=2y+6\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)
Thay \(x=\frac{2y}{3}\)vào A ta được :
\(\frac{\left(\frac{2y}{3}\right)^2+y^2}{\frac{2y}{3}\cdot y}=\frac{\frac{4y^2}{9}+y^2}{\frac{2y^2}{3}}=\left(\frac{4y^2+9y^2}{9}\right)\cdot\frac{3}{2y^2}=\frac{13y^2}{9}\cdot\frac{3}{2y^2}=\frac{13}{6}\)
Chúc bạn thi tốt !
Câu hỏi của Nguyễn Nguyên Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)(1)
Từ \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}=\left(\frac{a}{b}\right)^3\left(đpcm\right)\)