K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

7 tháng 8 2020

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

21 tháng 1 2020

hình như bạn chép sai đề vì kết quả của vế trái mà tôi ra là: 2/căn bậc hai(3x +y) còn vế kia 2/căn x+căn y và mẫu của vế trái lại lớn hơn mẫu của vế phải và tử của 2 vế bằng nhau =>phân số vế trái bé hơn phân số của vế phải 

=>tôi không thể chứng minh được

2 tháng 1 2017

chia vế trái cho ab ta được :

\(\frac{VT}{ab}=\frac{a\sqrt{b-1}+b\sqrt{a-1}}{ab}\)        

         \(=\frac{\sqrt{b-1}}{b}+\frac{\sqrt{a-1}}{a}\)

   Áp dụng BĐT cauchy cho hai số không âm

\(a=\left(a+1\right)-1\ge2\sqrt{a-1}\Rightarrow\frac{\sqrt{a-1}}{a}\le\frac{1}{2}\)

\(b=\left(b+1\right)-1\ge2\sqrt{b-1}\Rightarrow\frac{\sqrt{b-1}}{b}\le\frac{1}{2}\)   

Cộng theo vế ta được \(\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-1}}{b}\le\frac{1}{2}+\frac{1}{2}=1\)

                         \(\Leftrightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\left(đpcm\right)\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a-1=1\\b-1=1\end{cases}}\Leftrightarrow a=b=2\)

1 tháng 1 2017

Với a = 5, b = 2 thì

VT = 5.1 + 2.2 = 9 < 2.5 = 10

Vậy đề sai