Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\left(a\ge0\right)\)\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) \(=6\sqrt{a}\)
2) \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{80}}\)
= \(2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{5}}\)
= \(8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{5}}\)
= \(6\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{5}}\)
3) \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}\) = \(x+\sqrt{x}+1\)
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)
a) \(2x-\sqrt{4x^2+4x+1}=2x-\sqrt{\left(2x+1\right)^2}=2x-\left|2x+1\right|\)
Vì \(x< -\frac{1}{2}\)nên \(\left|2x+1\right|=-\left(2x+1\right)\)
\(\Rightarrow2x+2x+1=4x+1\)
b) \(3x+2-\sqrt{9x^2-12x+4}=3x+2-\sqrt{\left(3x-2\right)^2}=3x+2-\left|3x-2\right|\)
Khi \(x\ge\frac{2}{3}\)thì \(\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-3x+2=4\)
Khi \(x< \frac{2}{3}\) thì \(\left|3x-2\right|=2-3x\)
\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-\left(2-3x\right)=6x\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
Đặt \(\sqrt{a}=x\) ta được : \(3x-4x+7x=6x\)\(=6\sqrt{a}\)( Do \(a\ge0\))
d) \(\sqrt{160a}+2\sqrt{40a}-3\sqrt{90a}=4\sqrt{10a}+4\sqrt{10a}-9\sqrt{10a}\)\(=-\sqrt{10}\)
TK NKA !!!
\(\sqrt{\left(2\sqrt{2}-3\right)^2}+2\sqrt{2}=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3\)
\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}=\left|\sqrt{10}-3\right|+\left|\sqrt{10}-4\right|\)
\(=\sqrt{10}-3+4-\sqrt{10}=1\)
\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|2-\sqrt{3}\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)
\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)
\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)
\(A=\sqrt{49a^2}+3a=7\left|a\right|+3a\)
Nếu \(a\ge0\)thì: \(A=7a+3a=10a\)
Nếu \(a< 0\)thì: \(A=-7a+3a=-4a\)
\(B=3\sqrt{9a^6}-6a^3=9\left|a^3\right|-6a^3\)
Nếu \(a\ge0\)thì: \(B=9a^3-6a^3=3a^3\)
Nếu \(a< 0\)thì: \(B=-9a^3-6a^3=-15a^3\)
\(\dfrac{1}{2}\sqrt{16a^2}-\sqrt{9a^2}\)
\(=\dfrac{1}{2}\sqrt{\left(4a\right)^2}-\sqrt{\left(3a\right)^2}\)
\(=\dfrac{1}{2}\left|4a\right|-\left|3a\right|\)
\(=\dfrac{1}{2}\left|a\right|\)
\(\sqrt{9a}-\sqrt{16a}-\sqrt{49a}\)
\(=3\sqrt{a}-4\sqrt{a}-7\sqrt{a}\)
\(=-8\sqrt{a}\)