\(\sqrt{9+4\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

\(=\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)

a) Ta có: \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\cdot\sqrt{10}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\left|\sqrt{10}-1\right|=\sqrt{10}-1\)

b) Ta có: \(\sqrt{9-2\sqrt{14}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{2}\right|\)

\(=\sqrt{7}-\sqrt{2}\)

c) Ta có: \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

d) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5+2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\left(\sqrt{5}+2\right)\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

e) Ta có: \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\left(\sqrt{4-\sqrt{7}}\right)-\sqrt{2}\cdot\left(\sqrt{4+\sqrt{7}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}-\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\left(\sqrt{7}+1\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

g) Ta có: \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|3+\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}+3+\sqrt{2}+\sqrt{2}+\sqrt{3}\)

\(=3+2\sqrt{3}+2\sqrt{2}\)

h) Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\cdot\sqrt{\left(\sqrt{3}+2\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\cdot\left(\sqrt{3}+2\right)}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{48-10\sqrt{3}-20}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+5\cdot\left(5-\sqrt{3}\right)}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

k) Ta có: \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

\(=\sqrt{49-2\cdot7\cdot\sqrt{45}+45}-\sqrt{49+2\cdot7\cdot\sqrt{45}+45}\)

\(=\sqrt{\left(7-\sqrt{45}\right)^2}-\sqrt{\left(7+\sqrt{45}\right)^2}\)

\(=\left|7-\sqrt{45}\right|-\left|7+\sqrt{45}\right|\)

\(=7-\sqrt{45}-\left(7+\sqrt{45}\right)\)

\(=7-\sqrt{45}-7-\sqrt{45}\)

\(=-2\sqrt{45}=-6\sqrt{5}\)

i) Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\cdot\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(=8+2\cdot\sqrt{16-\left(10+2\sqrt{5}\right)}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=8+2\cdot\left(\sqrt{5}-1\right)\)

\(=8+2\sqrt{5}-2\)

\(=6+2\sqrt{5}\)

\(=\left(\sqrt{5}+1\right)^2\)

\(\Leftrightarrow A=\sqrt{5}+1\)

16 tháng 5 2019

câu b:

(\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\))^2

\(=\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)\)\(-2\sqrt{5+2\sqrt{6}}\sqrt{5-2\sqrt{6}}\)

\(=4\sqrt{6}-2\sqrt{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}\)

\(=4\sqrt{6}-2\sqrt{5^2-\left(2\sqrt{6}\right)^2}\)

\(=4\sqrt{6}-2\sqrt{25-24}=4\sqrt{6}-2\)

mấy câu khác tương tự

Câu 8:

a)

Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)

Ta có: 3>1

\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)

\(\Leftrightarrow\sqrt{3}>1\)

\(\Leftrightarrow\sqrt{3}-1>0\)

\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)

Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)

b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)

\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)

\(=5+4\sqrt{5}+4\)

\(=9+4\sqrt{5}=VT\)(đpcm)

c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)

\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)

d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4=VP\)(đpcm)

13 tháng 7 2020

em cảm ơn ạ yeu

26 tháng 7 2017

a)\(\sqrt{\dfrac{4}{9-4\sqrt{5}}}-\sqrt{\dfrac{4}{9+4\sqrt{5}}} \Leftrightarrow \dfrac{\sqrt{4}}{\sqrt{(2-\sqrt{5}})^{2}}-\dfrac{\sqrt{4}}{(2+\sqrt{5})^{2}} \Leftrightarrow \dfrac{2(2+\sqrt{5})}{(\sqrt{5}-2)(2+\sqrt{5})}-\dfrac{2(\sqrt{5}-2)}{(\sqrt{5}-2)(2+\sqrt{5})} \Leftrightarrow \dfrac{4+2\sqrt{5}-(2\sqrt{5}-4)}{4-5} \Leftrightarrow \dfrac{8}{-1} = -8\)b)\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}} =\dfrac{\sqrt{2}\sqrt{8-4\sqrt{3}}}{\sqrt{2}\sqrt{2}} =\dfrac{\sqrt{16-8\sqrt{3}}}{2} =\dfrac{\sqrt{(2-2\sqrt{3})^{2}}}{2} =\dfrac{2\sqrt{3}-2}{2} =\dfrac{2(\sqrt{3}-1)}{2} =\sqrt{3}-1\)c)\(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}} =\sqrt{2}\sqrt{7-4\sqrt{3}}-\sqrt{2}\sqrt{12+6\sqrt{3}} =\sqrt{2}(\sqrt{(4-\sqrt{3})^{2}}-\sqrt{(3+\sqrt{3})^{2}}) =\sqrt{2}((4-\sqrt{3})-(3+\sqrt{3})) =\sqrt{2}(1-2\sqrt{3}) =\sqrt{2}-2\sqrt{6}\)

18 tháng 6 2019

a)

\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1-\sqrt{5}+1\\ =2\)

b) Sửa đề:

\(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}-2\sqrt{6}\\ =\sqrt{\left(\sqrt{6}+1\right)^2}+\sqrt{\left(\sqrt{6}-1\right)^2}-2\sqrt{6}\\ =\sqrt{6}+1+\sqrt{6}-1-2\sqrt{6}\\ =0\)

c)

\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}-2\sqrt{5}\\ =\sqrt{9+2\sqrt{20}}+\sqrt{9-2\sqrt{20}}-2\sqrt{5}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}-2\sqrt{5}\\ =\sqrt{5}+2+\sqrt{5}-2-2\sqrt{5}\\ =0\)

14 tháng 6 2018

Mình làm 5 bài trắc nha

Hỏi đáp Toán

14 tháng 6 2018

Hỏi đáp Toán

11 tháng 7 2018

cho cách làm dạng bài này luôn. Chỗ nào chưa hiểu thì nói tớ sẽ giải thích thêm (cần góp ý để hoàn thiện thêm phần hướng dẫn đó mà. Cảm ơn cậu).

Phương Nam Phim (à quên, Từ Hạ) hân hạnh giới thiệu bộ phim...

4 tháng 7 2018

a)  \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left(\sqrt{5}-2\right)-\left(\sqrt{5}+2\right)=-4\)

b)   \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\frac{1}{\sqrt{2}}.\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1\right)=-\sqrt{2}\)

c)  \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}=\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)

\(=7-3\sqrt{5}-\left(7+3\sqrt{5}\right)=-6\sqrt{5}\)