\(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

ĐKXĐ:\(x\ge\frac{1}{3}\)

Đặt \(\sqrt{6x-1}=a>0;\sqrt{9x^2-1}=b\ge0\Rightarrow a^2-b^2=6x-9x^2\)

PT \(\Leftrightarrow a+b=a^2-b^2\Leftrightarrow\left(a-b-1\right)\left(a+b\right)=0\)

Dễ thấy: \(a+b>0\) (do cách đặt)

Nên \(a=b+1\)

...

7 tháng 10 2021
a. 6x³-9x²
AH
Akai Haruma
Giáo viên
30 tháng 9 2017

Lời giải:

Đặt \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\). Khi đó :

\(6x-9x^2=a^2-b^2\)

PT tương đương:

\(a+b=a^2-b^2\)

\(\Leftrightarrow (a+b)[1-(a-b)]=0\)

\(\Leftrightarrow \) \(\left[{}\begin{matrix}a+b=0\\a-b=1\end{matrix}\right.\)

+) Nếu \(a+b=0\Leftrightarrow \sqrt {6x-1}+\sqrt{9x^2-1}=0\)

\(\sqrt{6x-1}\geq 0; \sqrt{9x^2-1}\geq 0\) nên điều trên xảy ra khi mà

\(\sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)

+) Nếu \(a-b=1\Leftrightarrow \sqrt{6x-1}-\sqrt{9x^2-1}=1\)

\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)

\(\Leftrightarrow 6x-1=9x^2-1+1+2\sqrt{9x^2-1}\)

\(\Leftrightarrow 9x^2-6x+1+2\sqrt{9x^2-1}=0\)

\(\Leftrightarrow (3x-1)^2+2\sqrt{(3x-1)(3x+1)}=0\)

\((3x-1)^2\geq 0; \sqrt{(3x-1)(3x+1)}\geq 0\) nên điều trên xảy ra khi mà:

\((3x-1)^2=\sqrt{(3x-1)(3x+1)}=0\Leftrightarrow x=\frac{1}{3}\)

Thử lại thấy đúng.

Vậy \(x=\frac{1}{3}\)

9 tháng 7 2019

Sao trường hợp 1 lại vô lý o chỗ đó ạ

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

ĐKXĐ: \(x\geq \frac{1}{3}\)

Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:

\(a+b=a^2-b^2\)

\(\Leftrightarrow a+b=(a-b)(a+b)\)

\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)

Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$

\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)

Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)

\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)

\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)

Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)

Vậy........

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

ĐKXĐ: \(x\geq \frac{1}{3}\)

Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:

\(a+b=a^2-b^2\)

\(\Leftrightarrow a+b=(a-b)(a+b)\)

\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)

Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$

\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)

Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)

\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\)\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)

\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)

Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)

Vậy........

4 tháng 3 2019

x=0 ; x=2/3 - cau b 

anh giai tu giai thu

5 tháng 3 2019

Giai giùm đi

21 tháng 6 2017

a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)

\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)

\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)

Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)

b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)

\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)

Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)

Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~