K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Mai Huy Long - Toán lớp 10 | Học trực tuyến

17 tháng 9 2023

1) \(y=\dfrac{2x^2+1}{x^2}\)

\(\Rightarrow y'=\dfrac{\left(4x+1\right)x^2-2x\left(2x^2+1\right)}{x^4}\)

\(\Leftrightarrow y'=\dfrac{4x^3+x^2-4x^3-2x}{x^4}\)

\(\Leftrightarrow y'=\dfrac{x^2-2x}{x^4}=\dfrac{x\left(x-2\right)}{x^4}=\dfrac{x-2}{x^3}\)

2) \(f\left(x\right)=\sqrt[]{-5x^2+14x-9}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-10x+14}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-2\left(5x-7\right)}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}\)

Để \(f'\left(x\right)=0\)

\(f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}=0\)

\(\Leftrightarrow5x-7=0\)

\(\Leftrightarrow5x=7\)

\(\Leftrightarrow x=\dfrac{7}{5}\)

Vậy tập hợp giá trị để \(f'\left(x\right)=0\) là \(\left\{\dfrac{7}{5}\right\}\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=x+1-1\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-1\right)\)

\(\Leftrightarrow\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x-5=-1\)

\(\Leftrightarrow x=2\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(6x+10+4\sqrt{6x+10}+4=4x^2+20x+25\)

\(\Leftrightarrow\left(\sqrt{6x+10}+4\right)^2=\left(2x+5\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}+4=2x+5\\\sqrt{6x+10}+4=-2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}=2x+1\left(1\right)\\\sqrt{6x+10}=-2x-9< 0\left(loại\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow6x+10=4x^2+4x+1\) \(\left(x\ge-\dfrac{1}{2}\right)\)

\(\Leftrightarrow4x^2-2x-9=0\)

\(\Rightarrow x=\dfrac{1+\sqrt{37}}{4}\)

31 tháng 7 2021

a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)

\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)

\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)

TH1: \(x\ge-1\)

\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

TH2: \(x< -1\)

\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)

\(\Leftrightarrow...\)

Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi