K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)-1=0\) (ĐKXĐ : \(1\le x\le2\) )

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}+\sqrt{x+2}-\sqrt{\left(2-x\right)\left(x-1\right)}-\sqrt{x-1}-1=0\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}-\left(2-\sqrt{x+2}\right)-\sqrt{\left(2-x\right)\left(x-1\right)}+\left(1-\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{\sqrt{x+2}+2}-\sqrt{\left(2-x\right)\left(x-1\right)}+\frac{2-x}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-2}=0\\\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}=0\end{array}\right.\)

Với \(\sqrt{x-2}=0\) => x = 2 (TMĐK)

Với \(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}=0\) , từ điều kiện \(1\le x\le2\) ta luôn có : \(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}>0\)

Vậy phương trình có nghiệm : x = 2

4 tháng 7 2016

\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)(ĐKXĐ : \(x\le-1\)hoặc \(x\ge-\frac{1}{4}\))

\(\Leftrightarrow\left(\sqrt{4x^2+5x+1}-2\sqrt{7}x\right)-\left(\sqrt{4x^2-4x+4}-2\sqrt{7}x\right)-\left(9x-3\right)=0\)

\(\Leftrightarrow\frac{\left(4x^2+5x+1\right)-28x^2}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-\frac{\left(4x^2-4x+4\right)-28x^2}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\frac{-24x^2+5x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}+\frac{24x^2+4x-4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\frac{-\left(3x-1\right)\left(8x+1\right)}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}+\frac{4\left(3x-1\right)\left(2x+1\right)}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-1=0\\\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3=0\end{array}\right.\)

Với 3x - 1 = 0 => x = \(\frac{1}{3}\) (TMĐK)

Với \(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3=0\) , Từ điều kiện \(\left[\begin{array}{nghiempt}x\le-1\\x\ge-\frac{1}{4}\end{array}\right.\) ta luôn có : \(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3>0\)

Vậy phương trình có nghiệm : \(x=\frac{1}{3}\)

3 tháng 2 2019

đa phần mình sử dụng phương pháp liên hợp nha bạn

\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:

\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)

d. điều kiện: \(x\le-4\cup x\ge0\), pt:

\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)

e. điều kiện:x thuộc R

\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)

(1) mình không biết có vô nghiệm không nữa và cũng thua luôn

f. điều kiện: \(x\ge-2\)

bài này giải cách hơi khác một chút

đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)

pt:

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)

\(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)

=> (1) = (2)

\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)

TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)

g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)

pt:

\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)

\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)

(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)

10 tháng 2 2019

thank bn

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

NV
26 tháng 11 2019

a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)

\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)

Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)

Phương trình trở thành:

\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)

\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)

Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(

b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)

Pt trở thành:

\(a+10\left(\frac{a^2-5}{4}\right)=13\)

\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)

\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)

NV
26 tháng 11 2019

c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)

\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)

Đặt \(x\sqrt{2x^2+4}=a\) ta được:

\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)

NV
22 tháng 10 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x^2-2x-3}=a\ge0\Rightarrow x^2-2x=a^2+3\)

\(a^2+3+3a=7\)

\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2-2x-3=1\Rightarrow x^2-2x-4=0\Rightarrow x=...\)

b/ \(\Leftrightarrow x^2-4x+6-\sqrt{x^2-4x+12}=0\)

\(\Leftrightarrow x^2-4x+12-\sqrt{x^2-4x+12}-6=0\)


Đặt \(\sqrt{x^2-4x+12}=a>0\)

\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4x+12}=3\Rightarrow x^2-4x+3=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ \(\Leftrightarrow x^2+11+\sqrt{x^2+11}-42=0\)

Đặt \(\sqrt{x^2+11}=a\)

\(a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+11}=6\Rightarrow x^2+11=36\Rightarrow...\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x^2+2x-1+\sqrt{2x^2+4x+1}=0\)

Đặt \(\sqrt{2x^2+4x+1}=a\ge0\Rightarrow2x^2+4x=a^2-1\Rightarrow x^2+2x=\frac{a^2-1}{2}\)

\(\frac{a^2-1}{2}-1+a=0\)

\(\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+1}=1\Rightarrow2x^2+4x=0\Rightarrow...\)

e/

\(\Leftrightarrow x^2+5x+4-5\sqrt{x^2+5x+28}=0\)

Đặt \(\sqrt{x^2+5x+28}=a>0\Rightarrow x^2+5x=a^2-28\)

\(a^2-28+4-5a=0\)

\(\Leftrightarrow a^2-5a-24=0\Rightarrow\left[{}\begin{matrix}a=8\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+5x+28}=8\Rightarrow x^2+5x-36=0\Rightarrow...\)

P/s: tất cả các nghiệm sau khi giải ra x chắc chắn đều thỏa mãn

6 tháng 8 2016

bạn đăng 1 lúc nhiều v

k ai dám làm đâu

NV
25 tháng 11 2019

e/ ĐKXĐ: \(-1\le x\le4\)

Tưởng nó giống câu c mà ko phải

\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(4-x\right)\left(x+1\right)}=5\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\)

\(\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\) pt trở thành:

\(a+\frac{a^2-5}{2}=5\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)

\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)

\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)

\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

NV
27 tháng 11 2019

b/ĐKXĐ: \(0\le x\le4\)

\(\Leftrightarrow\left(3x-7\right)\sqrt{x\left(4-x\right)}+4-x=0\)

\(\Leftrightarrow\sqrt{4-x}\left[\left(3x-7\right)\sqrt{x}+\sqrt{4-x}\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\\sqrt{4-x}=\left(7-3x\right)\sqrt{x}\left(x\le\frac{7}{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow4-x=x\left(7-3x\right)^2\)

\(\Leftrightarrow4-x=x\left(9x^2-42x+49\right)\)

\(\Leftrightarrow9x^3-42x^2+50x-4=0\)

\(\Leftrightarrow\left(x-2\right)\left(9x^2-24x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{4+\sqrt{14}}{3}>\frac{7}{3}\left(l\right)\\x=\frac{4-\sqrt{14}}{3}\end{matrix}\right.\)