K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

\(\sqrt{49-8\sqrt{3}}=\sqrt{48-2\cdot4\sqrt{3}+1}=\sqrt{16\cdot3-2\cdot4\sqrt{3}+1}=\sqrt{\left(4\sqrt{3}\right)^2-2\cdot4\sqrt{3}+1}\)

\(=\sqrt{\left(4\sqrt{3}-1\right)^2}=4\sqrt{3}-1\)

25 tháng 6 2018

 biến đồi như bình thường ý

Bạn chỉ cần phân tích nó ra thành thừa số nguyên tố là xong

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Ý bạn là sao nhỉ? 

Theo mình hiểu thì bạn muốn biến 72 thành căn đúng không? Vậy thì bạn chỉ cần biểu diễn $72=\sqrt{72^2}=\sqrt{5184}$ thôi.

13 tháng 7 2021

Chị ơi

24 tháng 7 2019

\(\sqrt{9-4\sqrt{5}}\)

=\(\sqrt{5-4\sqrt{5}+4}\)

=\(\sqrt{\left(\sqrt{5}-2\right)^2}\)

=\(\sqrt{5}-2\)

24 tháng 7 2019

\(\sqrt{16-2\sqrt{55}}\)

=\(\sqrt{11-2\sqrt{11}.\sqrt{5}+5}\)

=\(\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)

=\(\sqrt{11}-\sqrt{5}\)

AH
Akai Haruma
Giáo viên
19 tháng 9 2021

$(\sqrt{A})^2$ và $\sqrt{A^2}$ khác nhau ở chỗ, ở cái thứ nhất thì bắt buộc điều kiện $A$ phải không âm, để căn thức xác định. Còn cái thứ hai thì $A^2$ luôn không âm rồi nên căn thức xác định với mọi $A$

Vậy, 1 cái thì yêu cầu $A$ luôn không âm từ trước. Một cái $A$ nhận giá trị nào cũng được. Từ đây ta cũng suy ra được:

$(\sqrt{A})^2=A$ không cần dùng trị tuyệt đối vì $A$ đã không âm sẵn rồi.

$\sqrt{A^2}=|A|$ vì không biết $A$ âm hay dương nên phải cho trị tuyệt đối vô để biểu thị căn bậc 2 số học không âm.

 

AH
Akai Haruma
Giáo viên
19 tháng 9 2021

Em lưu ý: 

- Viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

 

- Khi đặt nhiều câu hỏi việc sử dụng dấu "+" đầu dòng nên kết hợp với tách dòng, tách đoạn để câu hỏi trở nên sáng sủa, rõ ràng. Cách đặt câu hỏi em cũng nên lưu ý viết gọn thôi, tập trung vào đúng cái không rõ, không nên dài dòng để câu hỏi được mạch lạc.

 

Em hiểu đơn giản là em muốn có câu trả lời rõ ràng, mạch lạc thì người trả lời cũng muốn ở em điều ngược lại. Nếu em đặt câu hỏi không được rõ, quá dài thì người đọc sẽ bị ngán hoặc hiểu sai câu hỏi. Do đó, 1 là họ sẽ bỏ qua câu hỏi của em, 2 là họ hiểu lầm nên sẽ có thể không trả lời đúng ý em muốn.

31 tháng 3 2017

a) ĐS: 5.

b) = = = √9.√25 = 3.5 = 15.

c) ĐS: 45

d) ĐS: 25

29 tháng 5 2017

a. \(\sqrt{13^2-12^2}\)

=\(\sqrt{\left(13+12\right).\left(13-12\right)}\)

=\(\sqrt{25.1}\)

=\(\sqrt{25}.\sqrt{1}\)

=5.1

=5

b. \(\sqrt{17^2-8^2}\)

=\(\sqrt{\left(17+8\right).\left(17-8\right)}\)

=\(\sqrt{25.9}\)

=\(\sqrt{25}.\sqrt{9}\)

=5.3

=15

c. \(\sqrt{117^2-108^2}\)

=\(\sqrt{\left(117+108\right).\left(117-108\right)}\)

=\(\sqrt{225.9}\)

=\(\sqrt{225}.\sqrt{9}\)

=15.3

=45

d. \(\sqrt{313^2-312^2}\)

=\(\sqrt{\left(313+312\right).\left(313-312\right)}\)

=\(\sqrt{625.1}\)

=\(\sqrt{625}.\sqrt{1}\)

=25.1

=25

c.\(\sqrt{117^2-108^2}\)

Nếu nó là mũ chẵn thì chắc chắn đó là số chính phương

Còn nếu là mũ lẻ thì chưa chắc

16 tháng 8 2021

Nếu nó là mũ chẵn thì chắc chắn đó là số chính phương

Còn nếu là mũ lẻ thì chưa chắc

  
AH
Akai Haruma
Giáo viên
14 tháng 8 2021

\(D^2=6\Rightarrow \left[\begin{matrix} D=\sqrt{6}\\ D=-\sqrt{6}\end{matrix}\right.\)

Mà $D< 0$ thì đương nhiên $D=-\sqrt{6}$ rồi em.

14 tháng 8 2021

Em cảm ơn chị rất nhiều! 

16 tháng 4 2021

a) \(\sqrt{13^2-12^2}\)=\(\sqrt{\left(13-12\right)\left(13+12\right)}\)=\(\sqrt{1x25}\)=5

16 tháng 4 2021

Câu a: Ta có:

√132−122=√(13+12)(13−12)132−122=(13+12)(13−12)

                      =√25.1=√25=25.1=25

                      =√52=|5|=5=52=|5|=5.

Câu b: Ta có:

√172−82=√(17+8)(17−8)172−82=(17+8)(17−8)

                    =√25.9=√25.√9=25.9=25.9

                    =√52.√32=|5|.|3|=52.32=|5|.|3|.

                    =5.3=15=5.3=15.

Câu c: Ta có:

√1172−1082=√(117−108)(117+108)1172−1082=(117−108)(117+108)

                          =√9.225=9.225 =√9.√225=9.225

                          =√32.√152=|3|.|15|=32.152=|3|.|15|

                          =3.15=45=3.15=45.

Câu d: Ta có:

√3132−3122=√(313−312)(313+312)3132−3122=(313−312)(313+312)

                          =√1.625=√625=1.625=625

                          =√252=|25|=25=252=|25|=25.