\(\sqrt[4]{3x+1}+\sqrt[4]{4x+1}=2\sqrt[4]{x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

1) \(ĐK:\orbr{\begin{cases}0\le x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\end{cases}}\)

\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\Leftrightarrow x-5+\sqrt{x^2-4x+1}=3\sqrt{x}-6\)\(\Leftrightarrow\frac{-6\left(x-4\right)}{x-5-\sqrt{x^2-4x+1}}=\frac{9\left(x-4\right)}{3\sqrt{x}+6}\Leftrightarrow\left(x-4\right)\left(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}\right)=0\)

Xét phương trình \(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(18\sqrt{x}-9\right)+9\left(x-\sqrt{x^2-4x+1}\right)=0\)\(\Leftrightarrow\frac{81\left(4x-1\right)}{18\sqrt{x}+9}+\frac{9\left(4x-1\right)}{x+\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(4x-1\right)\left(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}\right)=0\)

Dễ thấy \(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}>0\)với mọi x thỏa mãn điều kiện nên 4x - 1 = 0 hay x = 1/4

Vậy phương trình có tập nghiệm S = {4; 1/4}

10 tháng 10 2020

e làm câu dễ nhất ^^

\(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\left(đk:-1\le x\le4\right)\)

\(< =>\left(\sqrt{x+1}-1\right)+\left(\sqrt{4-x}-2\right)+\left(\sqrt{\left(x+1\right)\left(4-x\right)}-2\right)=0\)

\(< =>\frac{x}{\sqrt{x+1}+1}-\frac{x}{\sqrt{4-x}+2}+\frac{x\left(3-x\right)}{\sqrt{\left(x+1\right)\left(4-x\right)+2}}=0\)

\(< =>x=0\)

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

10 tháng 5 2018

1000 bang 2

15 tháng 12 2017

a,dk x>0

\(\Leftrightarrow\)\(\dfrac{\left(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}\right)\left(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}\right)}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3x\)

\(\Leftrightarrow x\left(\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}-3\right)=0\)

\(\Rightarrow\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3\)

\(\Rightarrow\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\)

kh vs dé bài ta có hệ \(\left\{{}\begin{matrix}\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\\\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\end{matrix}\right.\)

cộng vs nhau ta có

\(2\sqrt{2x^2+x+1}=3x+\dfrac{x+2}{2}\)

\(\Leftrightarrow3\sqrt{2x^2+x+1}=5x+1\)

giải ra ta có x=1(tm) x=-8/7 (l)

15 tháng 12 2017

b, dk tu xd nhé ok

\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-2x=0\)

\(\Leftrightarrow2x\left(\dfrac{1}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1\left(l\right)\end{matrix}\right.\)

ns \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}>1\)

\(\Rightarrow x=0\left(tm\right)\)

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha