\(\sqrt[3]{x+\sqrt[4]{2,468}}+\sqrt[3]{x-\sqrt[4]{2,468}}=\sqrt[3]{2x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

AH
Akai Haruma
Giáo viên
19 tháng 2 2019

Câu 1:

ĐKXĐ: \(x\geq \frac{1}{2}\)

Ta có: \(2\sqrt{x+3}=x-1+4\sqrt{2x-1}\)

\(\Leftrightarrow (x-1)+4\sqrt{2x-1}-2\sqrt{x+3}=0\)

\(\Leftrightarrow x-1+2(2\sqrt{2x-1}-\sqrt{x+3})=0\)

\(\Leftrightarrow x-1+2.\frac{4(2x-1)-(x+3)}{2\sqrt{2x-1}+\sqrt{x+3}}=0\) (liên hợp)

\(\Leftrightarrow (x-1)+\frac{14(x-1)}{2\sqrt{2x-1}+\sqrt{x+3}}=0\)

\(\Leftrightarrow (x-1)\left(1+\frac{14}{2\sqrt{2x-1}+\sqrt{x+3}}\right)=0\)

Với mọi \(x\geq \frac{1}{2}\) ta luôn có \(1+\frac{14}{2\sqrt{2x-1}+\sqrt{x+3}}>0\). Do đó \(x-1=0\rightarrow x=1\) là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Câu 2:

ĐKXĐ: \(1\leq x\leq 5\)

Đặt \(\sqrt[4]{x-1}=a; \sqrt[4]{5-x}=b(a,b\geq 0)\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=2\\ a^4+b^4=4\end{matrix}\right.\) \(\Rightarrow a^4+(2-a)^4=4\)

Đặt \(1-a=m\) thì pt trở thành:

\((1-m)^4+(m+1)^4=4\)

\(\Leftrightarrow 2m^4+12m^2+2=4\)

\(\Leftrightarrow m^4+6m^2-1=0\)

\(\Leftrightarrow (m^2+3)^2=10\Rightarrow m^2=\sqrt{10}-3\Rightarrow m=\pm \sqrt{\sqrt{10}-3}\)

\(\Rightarrow a=1\pm \sqrt{\sqrt{10}-3}\)

\(\Rightarrow x=(1\pm \sqrt{\sqrt{10}-3})^4+1\)

Giải các phương trình sau: 1. a. \(\sqrt{x+3}-\sqrt{x-4}=1\) b. \(\sqrt{10-x}+\sqrt{x+3}=5\) c. \(\sqrt{15-x}+\sqrt{3-x}=6\) d. \(\sqrt{x-1}+\sqrt{x+1}=2\) e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\) f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\) g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\) i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\) k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\) l....
Đọc tiếp

Giải các phương trình sau:

1.

a. \(\sqrt{x+3}-\sqrt{x-4}=1\)

b. \(\sqrt{10-x}+\sqrt{x+3}=5\)

c. \(\sqrt{15-x}+\sqrt{3-x}=6\)

d. \(\sqrt{x-1}+\sqrt{x+1}=2\)

e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)

f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)

i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)

m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)

n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)

o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)

p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)

t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)

u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)

y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)

z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)

2.

a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)

b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)

c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)

e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)

f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)

h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)

k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)

l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)

m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)

o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)

p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

Làm nhanh giúp mk nhé mn ơi

5
19 tháng 11 2018

Giải pt :

1

a. ĐKXĐ : \(x\ge4\)

Ta có :

\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)

\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)

\(\Leftrightarrow x=13\) (TM ĐKXĐ)

Vậy \(S=\left\{13\right\}\)

b.ĐKXĐ : \(-3\le x\le10\)

Ta có :

\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 11 2018

Câu c,d làm giống câu b

Câu e làm giống câu a

29 tháng 7 2018

1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)

<=> \(\sqrt{\left(x-10\right)^2}=10\)

<=> \(\left|x-10\right|=10\)

=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)

Vậy S = \(\left\{20;0\right\}\)

2) \(\sqrt{x +2\sqrt{x}+1}=6\)

<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)

<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)

<=> \(\left|\sqrt{x}+1\right|=6\)

=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)

Vậy S = \(\left\{25\right\}\)

3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)

<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)

<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)

<=> \(\left|x-3\right|=\sqrt{3}+1\)

=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)

Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)

29 tháng 7 2018

4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)

<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)

<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)

<=> \(\left|\sqrt{3x}+1\right|=5\)

=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)

5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)

<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)

<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)

Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)

6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)

<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)

<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)

<=> \(\left|\sqrt{6x}+2\right|=7\)

=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)

=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

a) ĐK: \(x\geq \frac{1}{2}\)

Ta có: \(\sqrt{2x-1}-\sqrt{x+1}=2x-4\)

\(\Leftrightarrow \frac{(2x-1)-(x+1)}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow \frac{x-2}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow (x-2)\left(\frac{1}{\sqrt{2x-1}+\sqrt{x+1}}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\leftrightarrow x=2\\ \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}=2(*)\end{matrix}\right.\)

Đối với $(*)$:

\(x\geq \frac{1}{2}\Rightarrow \sqrt{2x-1}+\sqrt{x+1}\geq \sqrt{\frac{1}{2}+1}>1\)

\(\Rightarrow \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}< 1\)

Do đó $(*)$ vô nghiệm

Vậy pt có nghiệm duy nhất $x=2$

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

b) ĐK:.....

\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\)

TH1:

\(\sqrt{2x^2-3x+10}=\sqrt{2x^2-5x+4}\)

\(\Rightarrow 2x^2-3x+10=2x^2-5x+4\)

\(\Rightarrow 2x+6=0\Rightarrow x=-3\) (thử lại thấy không thỏa mãn)

TH2: \(\sqrt{2x^2-3x+10}\neq \sqrt{2x^2-5x+4}\), tức là \(x\neq -3\)

PT ban đầu tương đương với:

\(\frac{(2x^2-3x+10)-(2x^2-5x+4)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=1\) (do \(x\neq -3\) )

\(\Rightarrow \sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}=2\)

\(\Rightarrow \sqrt{2x^2-3x+10}=2+\sqrt{2x^2-5x+4}\)

Bình phương 2 vế:

\(2x^2-3x+10=4+2x^2-5x+4+4\sqrt{2x^2-5x+4}\)

\(\Leftrightarrow x+1=2\sqrt{2x^2-5x+4}\)

\(\Rightarrow (x+1)^2=4(2x^2-5x+4)\)

\(\Rightarrow 7x^2-22x+15=0\Rightarrow \left[\begin{matrix} x=\frac{15}{7}\\ x=1\end{matrix}\right.\) (thử đều thấy t/m)

Vậy...........

 

 

 

6 tháng 9 2019

a) x=49

b) x=4

c) x = 2 hoặc x = -2

d) x= 11,17355372

e) x =10

f) x=2

g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)

h) x =4

k) x = 4/3 hoặc x = -2/3

l) x = 2,5

m) x = 0,5

n) x=-0,5

6 tháng 9 2019

lưu ý: n) nếu theo đề bd thì: x= -1,5 hoặc x=2,5

NV
21 tháng 10 2019

1/

a/ ĐKXĐ: ...

\(A=\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(2\sqrt{x}-1\right)\left(\frac{x-\sqrt{x}+1+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)

Câu b không rút gọn được, lập phương lên thì biểu thức là nghiệm của pt \(x^3+6x-6=0\) ko có nghiệm đẹp

Bài 2:

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}+\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
21 tháng 10 2019

2/

b/

\(\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}=\sqrt{\left(x+11\right)\left(2x-1\right)}\)

Để phương trình đã cho xác định thì:

\(\left\{{}\begin{matrix}\left(x-4\right)\left(2x-1\right)\ge0\\2x-1\ge0\\\left(x+11\right)\left(2x-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge4\\x\le\frac{1}{2}\left(1\right)\end{matrix}\right.\\x\ge\frac{1}{2}\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow x=\frac{1}{2}\) thay vào pt thấy thỏa mãn

Vậy \(x=\frac{1}{2}\) là nghiệm duy nhất

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2-2x+1+2017x-2016-2\sqrt{2017x-2016}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2017x-2016}-1=0\end{matrix}\right.\) \(\Rightarrow x=1\)

d/ \(\Leftrightarrow\sqrt{\left(1+x^2\right)^3}-1+3x^4-4x^3=0\)

\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\left(1+x^2\right)^3+1}+x^2\left(3x^2-4x\right)=0\)

\(\Leftrightarrow\frac{x^6+3x^4+3x^2}{\left(1+x^2\right)^2+1}+x^2\left(3x^2-4x\right)=0\)

\(\Leftrightarrow x^2\left(\frac{x^4+3x^3+3}{x^4+2x^2+2}+3x^2-4x\right)=0\)

\(\Rightarrow x=0\)