Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)√x2−9 - 3√x−3 =0
<=> (√x-3)(√x+3)-3√x-3=0
<=> (√x-3)(√x+3-3)=0
<=> (√x-3)√x=0
<=> √x-3=0
<=>x=9
b)√4x2−12x+9=x - 3
<=> √(2x -3)2 =x-3
<=> 2x-3=x-3
<=>2x-x=-3+3
<=>x=0
c)√x2+6x+9=3x-1
<=> √(x+3)2 =3x-1
<=> x+3=3x-1
<=> -2x=-4
<=> x=2
Nhớ cho mình 1 tim nha bạn
Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.
a) \(\sqrt{x}-x-0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\1-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
b) \(x-\sqrt{2x-9}=6\)
\(\Leftrightarrow\sqrt{2x-9}=x-6\) (ĐK: \(x\ge\dfrac{9}{2}\))
\(\Leftrightarrow2x-9=\left(x-6\right)^2\)
\(\Leftrightarrow2x-9=x^2-12x+36\)
\(\Leftrightarrow x^2-14x+45=0\)
\(\Leftrightarrow x^2-5x-9x+45=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=9\left(tm\right)\end{matrix}\right.\)
c) \(3x-\sqrt{6x-\left(3-2\right)}=0\) (ĐK: \(x\ge\dfrac{1}{6}\))
\(\Leftrightarrow3x-\sqrt{6x-1}=0\)
\(\Leftrightarrow\sqrt{6x-1}=3x\)
\(\Leftrightarrow6x-1=9x^2\)
\(\Leftrightarrow9x^2-6x+1=0\)
\(\Leftrightarrow\left(3x-1\right)^2=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\left(tm\right)\)
a,ĐK: x≥4
Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)
b, ĐK: x≥2
Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
ĐK: \(x\ge\frac{1}{6}\).
\(\sqrt{3x+3}-\sqrt{6x-1}+18x^2-3x-2=0\)
\(\Leftrightarrow\left(\sqrt{3x+3}-2\right)-\left(\sqrt{6x-1}-1\right)+18x^2-3x-1=0\)
\(\Leftrightarrow\frac{3x+3-4}{\sqrt{3x+3}+2}-\frac{6x-1-1}{\sqrt{6x-1}+1}+\left(3x-1\right)\left(6x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{\sqrt{3x+3}+2}-\frac{2}{\sqrt{6x-1}+1}+6x+1\right)=0\)
\(\Leftrightarrow3x-1=0\)(vì \(\frac{1}{\sqrt{3x+3}+2}-\frac{2}{\sqrt{6x-1}+1}+6x+1>0\)với \(x\ge\frac{1}{6}\))
\(\Leftrightarrow x=\frac{1}{3}\)(thỏa mãn)
x = 1/3 là nghiệm của p/t
ĐKXĐ : \(x\ge\frac{1}{6}\) > 0
Pt đã cho \(\Leftrightarrow\sqrt{3x+3}-2+\left(18x^2-6x\right)+3x-\sqrt{6x-1}=0\) = 0
\(\Leftrightarrow\frac{3x+3-4}{\sqrt{3x+3}+2}+6x\left(3x-1\right)+\frac{9x^2-\left(6x-1\right)}{3x+\sqrt{6x-1}}=0\)
\(\Leftrightarrow\frac{3x-1}{\sqrt{3x+3}+2}+6x\left(3x-1\right)+\frac{\left(3x-1\right)^2}{3x+\sqrt{6x-1}}=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{\sqrt{3x+3}+2}+6x+\frac{3x-1}{3x+\sqrt{6x+1}}\right)=0\)
\(\Leftrightarrow\left(3x-1\right).A=0\) (1)
Thấy với \(x\ge\frac{1}{6}\):: \(\frac{3x-1}{3x+\sqrt{6x+1}}+1=\frac{6x+\sqrt{6x+1}-1}{3x+\sqrt{6x+1}}>0\)
\(6x-1\ge0\); \(\frac{1}{\sqrt{3x+3}+2}>0\)
Suy ra : \(A>0\) (2)
(1) ; (2) suy ra : x = 1/3