\(\sqrt{3x+1}+\sqrt{2-x}=1\)

\(x^2+5x+9=\left(x+5\right)\lef...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

a) Đk: \(-\dfrac{1}{3}\le x\le2\)

\(\sqrt{3x+1}+\sqrt{2-x}=1\Leftrightarrow\sqrt{-3x^2+5x+2}=-x-1\)

Ta có: \(VT\ge0\) ; \(VP< 0\forall-\dfrac{1}{3}\le x\le2\)

Kl: ptvn

b) \(x^2+5x+9=\left(x+5\right)\left(\left|x\right|+9\right)\) (*)

Th1: x >/ 0

(*) \(\Leftrightarrow x^2+5x+9=\left(x+5\right)\left(x+9\right)\)

\(\Leftrightarrow x^2+5x+9=x^2+14x+45\)

\(\Leftrightarrow9x=36\Leftrightarrow x=4\left(N\right)\)

Th2: x \< 0

(*) \(\Leftrightarrow x^2+5x+9=\left(x+5\right)\left(9-x\right)\)

\(\Leftrightarrow2x^2+x-36=0\Leftrightarrow\left[{}\begin{matrix}x=4\left(L\right)\\x=-\dfrac{9}{2}\left(N\right)\end{matrix}\right.\)

Kl: x=4 , x= - 9/2

c) Đk: \(x\ge-\dfrac{1}{3}\)

\(\sqrt{3x+1}=3x+1\Leftrightarrow\sqrt{3x+1}\left(\sqrt{3x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=0\\\sqrt{3x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)

Kl: x= -1/3 , x=0

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

NV
24 tháng 6 2019

a/ ĐXĐK: ...

\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)

\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))

\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

d/

\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)

Đặt \(\sqrt{x^2+x+1}=a\)

\(\Leftrightarrow3x^2-5ax+2a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

NV
5 tháng 3 2020

a/ \(\Rightarrow2x^2-3x-11=x^2-1\)

\(\Leftrightarrow x^2-3x-10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Thay 2 nghiệm vào cả 2 căn thức thấy đều xác định

Vậy nghiệm của pt là ...

b/ \(\left\{{}\begin{matrix}x\ge-1\\2x^2+3x-5=\left(x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-6=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=2\\x=-3\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
5 tháng 3 2020

c/

\(\Leftrightarrow x^2+4x+4=3x^2-5x+14\)

\(\Leftrightarrow2x^2-9x+10=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{5}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow\left\{{}\begin{matrix}-x-9\ge0\\\left(x-1\right)\left(2x-3\right)=\left(-x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\2x^2-5x+3=x^2+18x+81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-9\\x^2-23x-78=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=26\left(ktm\right)\\x=-3\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

10 tháng 10 2020

1) \(ĐK:\orbr{\begin{cases}0\le x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\end{cases}}\)

\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\Leftrightarrow x-5+\sqrt{x^2-4x+1}=3\sqrt{x}-6\)\(\Leftrightarrow\frac{-6\left(x-4\right)}{x-5-\sqrt{x^2-4x+1}}=\frac{9\left(x-4\right)}{3\sqrt{x}+6}\Leftrightarrow\left(x-4\right)\left(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}\right)=0\)

Xét phương trình \(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(18\sqrt{x}-9\right)+9\left(x-\sqrt{x^2-4x+1}\right)=0\)\(\Leftrightarrow\frac{81\left(4x-1\right)}{18\sqrt{x}+9}+\frac{9\left(4x-1\right)}{x+\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(4x-1\right)\left(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}\right)=0\)

Dễ thấy \(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}>0\)với mọi x thỏa mãn điều kiện nên 4x - 1 = 0 hay x = 1/4

Vậy phương trình có tập nghiệm S = {4; 1/4}

10 tháng 10 2020

e làm câu dễ nhất ^^

\(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\left(đk:-1\le x\le4\right)\)

\(< =>\left(\sqrt{x+1}-1\right)+\left(\sqrt{4-x}-2\right)+\left(\sqrt{\left(x+1\right)\left(4-x\right)}-2\right)=0\)

\(< =>\frac{x}{\sqrt{x+1}+1}-\frac{x}{\sqrt{4-x}+2}+\frac{x\left(3-x\right)}{\sqrt{\left(x+1\right)\left(4-x\right)+2}}=0\)

\(< =>x=0\)