Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\frac{\sqrt{27}}{\sqrt{12}}+\frac{1}{2}\)
\(=\frac{\sqrt{3}.\sqrt{9}}{\sqrt{3}.\sqrt{4}}+\frac{1}{2}\)
\(=\frac{\sqrt{9}}{\sqrt{4}}+\frac{1}{2}\)
\(=\frac{3}{2}+\frac{1}{2}\)
\(\frac{4}{2}=2\)
a) \(\sqrt{45}.\sqrt{15}.\sqrt{27}\)
\(=\left(\sqrt{15}\right)^2.\left(\sqrt{3}\right)^2.\sqrt{9}\)
\(=15.3.3\)
\(=135\)
a) \(\sqrt{45}\cdot\sqrt{15}\cdot\sqrt{27}=\sqrt{45\cdot15\cdot27}=135\)
b) \(\frac{\sqrt{17}}{\sqrt{12}}+\frac{1}{2}=\frac{\sqrt{51}}{6}+\frac{3}{6}=\frac{\sqrt{51}+3}{6}\)
c) \(\sqrt{\frac{1}{3}}:\sqrt{\frac{27}{50}}\cdot\sqrt{2}=\sqrt{\frac{1}{3}\cdot\frac{50}{27}\cdot2}=\frac{10}{9}\)
d) \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{9\cdot225}=45\)
a, \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}\)
\(=\sqrt{1.25}=\sqrt{25}=5\)
b, \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}\)
\(=\sqrt{9.25}=\sqrt{9}.\sqrt{25}=3.5=15\)
c, \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}\)
\(=\sqrt{9.225}=\sqrt{9}.\sqrt{225}=3.15=45\)
d, \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}\)
\(=\sqrt{1.625}=\sqrt{625}=25\)
Chúc bạn học tốt!!!
a, \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}=\sqrt{25}=5\)
b, \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}=\sqrt{9.25}=15\)
c, \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}\)
\(=\sqrt{9.225}=45\)
d, \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}=\sqrt{625}=25\)
\(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{9.225}=3.15=45\)
\(\sqrt{2}+2\sqrt{3}+\sqrt{18}-8\sqrt{2}=\sqrt{2}+2\sqrt{3}+3\sqrt{2}-8\sqrt{2}=2\sqrt{3}-4\sqrt{2}=\)\(2\left(\sqrt{3}-2\sqrt{2}\right)\)
a)\(\sqrt{\left(13+12\right)\left(13-12\right)}=\sqrt{25}+\sqrt{1}=5+1=6\)=6 ( hằng đẳng thức số 3) \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
b) tương tự
a) \(\sqrt{13^2-12^2}=\sqrt{\left(13-12\right)\left(13+12\right)}=\sqrt{25}=5\)
b) \(\sqrt{17^2-8^2}=\sqrt{\left(17-8\right)\left(17+8\right)}=\sqrt{25.9}=\sqrt{225}=15\)
c) \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225.9}=\sqrt{2025}=45\)
d) \(\sqrt{313^2-312^2}=\sqrt{\left(313-312\right)\left(313+312\right)}=\sqrt{625}=25\)
mk nghi nhu vay ko biet co dung ko
dung thi bao mk nha
a, \(=2\sqrt{7}-8+15\sqrt{7}-12=17\sqrt{7}-20\)
b, \(=2\sqrt{2}-10\sqrt{2}+4\sqrt{2}=-4\sqrt{2}\)
c, \(=\frac{3}{8}.\frac{4}{3}-2.\frac{2}{5}=\frac{1}{2}-\frac{4}{5}=-\frac{3}{10}\)
d, \(\sqrt{\left(\sqrt{3-1}\right)^2}-\sqrt{\left(\sqrt{3-2}\right)^2}=\sqrt{3-1}-\sqrt{3-2}=\sqrt{2}-\sqrt{1}=\sqrt{2}-1\)
e, \(\sqrt{2-3}\) không tồn tại
\(\sqrt{37^2-35^2}=\sqrt{144}=12\)
\(\sqrt{221^2-220}=\sqrt{48621}\approx220,50\)
\(\sqrt{65^2-63^2}=\sqrt{256}=16\)
\(\sqrt{117^2-108^2}=\sqrt{2025}=45\)