\(\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{7-5\sqrt{2}} \) là số vô tỉ hay số hữu tỉ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}+\sqrt[3]{\left(1-\sqrt{2}\right)^3}\)

\(=\sqrt{2}+1+1-\sqrt{2}=2\) là số hữu tỉ

2 tháng 8 2017

Ta có:

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)

\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)

\(=\sqrt{1993}-\sqrt{2}\)

Vậy P là số vô tỉ

2 tháng 8 2017

sao lại biết \(\sqrt{1993}-\sqrt{2}\)là số vô tỉ

10 tháng 8 2017

a/ \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}=\dfrac{2\left(\sqrt{7}+5\right)}{-18}-\dfrac{2\left(\sqrt{7}-5\right)}{-18}=\dfrac{-\sqrt{7}-5+\sqrt{7}-5}{9}=\dfrac{-10}{9}\)

--> biểu thức trên là số hữu tỉ (đpcm)

b/ \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\dfrac{\left(\sqrt{7}+\sqrt{5}\right)^2}{2}+\dfrac{\left(\sqrt{7}-\sqrt{5}\right)^2}{2}=\dfrac{24}{2}=12\)

--> biểu thức trên là số hữu tỉ (đpcm)

a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{20}{-18}=\dfrac{-10}{9}\) là số hữu tỉ

b: \(=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\dfrac{24}{2}=12\) là số hữu tỉ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

20 tháng 7 2018

a, Giả sử \(\sqrt{6}\) là số hữu tỉ

\(\Rightarrow\) \(\sqrt{6}\)viết được dưới dạng phân số tối giản \(\frac{a}{b}\)\(\Rightarrow\) \(\sqrt{6}\)\(\frac{a}{b}\)\(\Leftrightarrow\) (\(\sqrt{6}\))= (\(\frac{a}{b}\)) \(\Leftrightarrow\) a2 = 6b2 mà (a, b) = 1 \(\Rightarrow\) a2 chia hết cho 6 mà (6, 1) = 1 \(\Rightarrow\) a chia hết cho 6 (1)

Đặt a = 6k \(\Rightarrow\) a2 = 36k2 và a = 6b\(\Rightarrow\) 36k2 = 6b2 \(\Leftrightarrow\) b= 6k2 mà (6, 1) = 1 \(\Rightarrow\) b2 chia hết cho 6 \(\Rightarrow\) b chia hết cho 6 (2)

Từ (1), (2) và \(\frac{a}{b}\)là phân số tối giản \(\Rightarrow\) Trái với giả thiết (a, b) = 1.

Vậy \(\sqrt{6}\)là số vô tỉ.

b, Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ, đặt \(\sqrt{1+\sqrt{2}}\)= a

Ta có: a2 = (\(\sqrt{1+\sqrt{2}}\))2 = 1 + \(\sqrt{2}\)\(\Leftrightarrow\) a2 - 1 = \(\sqrt{2}\)

Ta có: a2 - 1 là số hữu tỉ mà \(\sqrt{2}\)là số vô tỉ \(\Rightarrow\) vô lí

Vậy \(\sqrt{1+\sqrt{2}}\)là số vô tỉ