\(\sqrt[3]{1728}\div\sqrt[3]{64}\)    tính theo 2 cách

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

Căn bậc haiCăn bậc hai

ta có

\(a=\dfrac{4\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}}{2}\)

\(=2\sqrt{\sqrt{5}-\sqrt{5}+1}=2\)

\(P=\left(2^5-7\cdot2^2-3\right)^{81}+19=1+19=20\)

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

2 tháng 10 2017

cho x=3535+3641220357 .38+35

y=39233+42 +29394281 

Tính xy

18 tháng 10 2020

a) \(\sqrt{36}.\sqrt{121}+\sqrt[3]{-64}-\sqrt[3]{125}\)

\(=6.11+\left(-4\right)-5=66-9=57\)

b) \(\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}-30\sqrt{\frac{3}{25}}\)

\(=\sqrt{25.3}+\left|\sqrt{3}-2\right|-30.\frac{\sqrt{3}}{\sqrt{25}}\)

\(=5\sqrt{3}+2-\sqrt{3}-30.\frac{\sqrt{3}}{5}\)

\(=5\sqrt{3}+2-\sqrt{3}-6\sqrt{3}=2-2\sqrt{3}\)

c) \(\sqrt{11-4\sqrt{7}}-\frac{12}{1+\sqrt{7}}=\sqrt{7-4\sqrt{7}+4}-\frac{12}{1+\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\frac{12}{1+\sqrt{7}}=\left|\sqrt{7}-2\right|-\frac{12}{1+\sqrt{7}}\)

\(=\left(\sqrt{7}-2\right)-\frac{12}{\sqrt{7}+1}=\frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}+1\right)}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}\)

\(=\frac{5-\sqrt{7}}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}=\frac{-7-\sqrt{7}}{\sqrt{7}+1}\)

\(=\frac{-\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}=-\sqrt{7}\)

19 tháng 10 2016

a, =\(9\sqrt{2}\)

b, =21

21 tháng 9 2018

a) \(=9\sqrt{2}\)

b) \(=21\)

học tốt.

11 tháng 8 2017

a,\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=|^{ }_{ }2-\sqrt{5}|^{ }_{ }-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)(vì \(2-\sqrt{5}< 0\))

=-2

b,\(\sqrt{16}\cdot\sqrt{25}+\sqrt{256}\cdot\sqrt{64}\)

\(=4\cdot5-16\cdot8=20+128=148\)

c,\(\sqrt{\left(\sqrt{2}-3\right)^2}-\sqrt{\left(5-\sqrt{2}\right)^2}\)

\(=|^{ }_{ }\sqrt{2}-3|^{ }_{ }-|^{ }_{ }5-\sqrt{2}|^{ }_{ }\)

\(=3-\sqrt{2}-5+\sqrt{2}\)(vì \(\sqrt{2}-3< 0;5-\sqrt{2}>0\))

\(=-2\)

11 tháng 8 2017

cảm ơn