Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\sqrt{19-3\sqrt{40}}-\sqrt{19+3\sqrt{40}}=\sqrt{19-2\sqrt{90}}-\sqrt{19+2\sqrt{90}}=\sqrt{10-2.\sqrt{10}.3+9}-\sqrt{10+2.\sqrt{10}.3+9}=\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{\left(\sqrt{10}+3\right)^2}=\sqrt{10}-3-\sqrt{10}-3=-6\)\(B=\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}+\sqrt{6+2.\sqrt{3}.\sqrt{6}+3}-\sqrt{24+12\sqrt{3}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{\sqrt{3}}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}=\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}=0\)
\(C=\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\) \(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\) \(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(D=\sqrt{\frac{8+2\sqrt{15}}{2}}-\sqrt{\frac{14-6\sqrt{5}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}\)
\(=\frac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\frac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
\(E=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(F=\sqrt{\frac{24-6\sqrt{7}}{2}}-\sqrt{\frac{24+6\sqrt{7}}{2}}\) \(=\sqrt{\frac{21-2\sqrt{21\cdot3}+3}{2}}-\sqrt{\frac{21+2\sqrt{21\cdot3}+3}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{21}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{21}+\sqrt{3}\right)^2}{2}}\)
\(=\frac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=\frac{-2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
\(G=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\) \(=\left(3+\sqrt{3}\right)\cdot\sqrt{\left(3-\sqrt{3}\right)^2}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)
\(H=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}-2-3-\sqrt{5}=-5\)
\(I=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=2\sqrt{2}-1-2\sqrt{3}+1=2\sqrt{2}-2\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)
\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)
\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)
b)
\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)
\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)
\(=32+8\sqrt{15}-8\sqrt{15}=32\)
c)
\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)
\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)
\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)
d)
\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)
\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)
\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)
e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa
f)
\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)
\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)
\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)
\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
hih như là + \(\sqrt[3]{16}\)- \(\sqrt[3]{40}\)
nếu thế thì từ đề =[\(\left(\sqrt[3]{10}\right)^2\)-\(\sqrt[3]{10}.\sqrt[3]{4}\)+\(\left(\sqrt[3]{4}\right)^2\)](\(\sqrt[3]{10}\)+\(\sqrt[3]{4}\))
= \(\left(\sqrt[3]{10}+\sqrt[3]{4}\right)^3\)
\(\left(\sqrt[3]{100}+\sqrt[3]{40}-\sqrt[3]{16}\right).\left(\sqrt[3]{10}+\sqrt[3]{4}\right)\)
\(\approx20,736\)