Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5\left(\sqrt{6}-1\right)\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}\)
\(=\frac{5\left(\sqrt{6}-1\right)^2}{5}-\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{1}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left(\sqrt{6}-1\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{2}-1\right)\)
\(=6-2\sqrt{6}+1-2+2\sqrt{6}-3+\sqrt{2}-1=\sqrt{2}\)
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn
a) Ta có :\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}\) =\(\sqrt{\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{\left(\sqrt{3}-\sqrt{2}\right)^2}}\)=\(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
Tương tự : \(\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\) = \(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\)
=>\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}\)+\(\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)=\(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)+\(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\)= \(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)=\(\frac{5+2\sqrt{6}+5-2\sqrt{6}}{3-2}\)=10
\(\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=\sqrt{2}-1-\left(2+\sqrt{2}\right)\)
\(=-3\)