\(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)

Giúp em tìm x nha!!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

Đặt \(\sqrt{2x^2+5x+12}=a\text{ và }\sqrt{2x^2+3x+2}=b\left(a\text{ và }b\ge0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=x+5\left(\text{✳}\right)\\a^2-b^2=2\left(x+5\right)\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=2\left(a+b\right)\)

\(\Rightarrow a=b+2\text{. Thay vào }\left(\text{✳}\right)\)

\(\Rightarrow\left(b+2\right)+b=x+5\)

\(\Leftrightarrow b=\dfrac{x+3}{2}\)

\(\Rightarrow2\sqrt{2x^2+3x+2}=x+3\)

\(\Leftrightarrow8x^2+12x+8=x^2+6x+9\)

\(\Leftrightarrow\left(7x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-1\end{matrix}\right.\)

☠ Bạn tự kết luận nha >..<"

22 tháng 1 2018

nhan lien hop ve trai

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

NV
3 tháng 1 2019

1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)

\(t^2-2+\left(3-t\right)x-1-2t=0\)

\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)

Vậy nghiệm pt là \(x=\pm\sqrt{7}\)

2/

\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)

Đặt \(\sqrt{x^2+3}-3x=t\)

\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)

TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)

NV
3 tháng 1 2019

3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)

\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)

\(\Rightarrow VT\le2\)

\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)

\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

4/

ĐKXĐ: \(x\ge\dfrac{-5}{4}\)

\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

NV
24 tháng 6 2019

a/ ĐXĐK: ...

\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)

\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))

\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

d/

\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)

Đặt \(\sqrt{x^2+x+1}=a\)

\(\Leftrightarrow3x^2-5ax+2a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)

7 tháng 9 2017

do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)

voi dk \(x\ge-1\) ta co 

\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)

b,\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

    \(\Leftrightarrow\left|2x-5\right|+2x=5\)

th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)

th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)

\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)

kl \(x\le\frac{5}{2}\)

c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)

d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)

 =\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)

ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

dau = xay ra \(\Leftrightarrow x=-1\)

27 tháng 6 2017

1) Đk: x khác -3

x khác 1

Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)

\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

kl: x thuộc {-3;2}

27 tháng 6 2017

@Nguyễn Thị Giang Thanh