Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: -1 <= x <= 1
Đặt y = \(\sqrt{1-x^2}\)
=> y2 = 1 - x2 (y >= 0)
=> x = \(\sqrt{1-y^2}\)
<=>
x3 + y3 = 2xy
x2 + y2 = 1
<=>
(x + y)3 - 3x2y - 3xy2 = 2xy
(x + y) - 2xy = 1
<=>
(x + y)3 - 3xy(x + y) = 2xy
(x + y) - 2xy = 1
Đặt S = x + y, P = xy
=>
S3 - 3SP = 2P
S - 2P = 1
a) chắc là nhóm lại thui để sau mk làm:v
b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
Đk: tự lm nhé :v
\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)
\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)
\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)
Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(x=\sqrt[3]{7+\sqrt{\frac{49}{8}}}+\sqrt[3]{7-\sqrt{\frac{49}{8}}}\)
ta lập phương hai vế có
\(x^3=7+\sqrt{\frac{49}{8}}+7-\sqrt{\frac{49}{8}}+3\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}x\)
\(< =>x^3=14+3\sqrt[3]{7^2-\frac{49}{8}}x\)
\(< =>x^3=14+3\sqrt[3]{\frac{343}{8}}x\)
\(< =>x^3=14+3.\frac{7}{2}x\)
\(< =>2x^3-21x-28=0\)
nên
\(fx=\left(2x^3-21x-29\right)^3=\left(2x^3-21x-28-1\right)^3=\left(-1\right)^3=-1\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
Ai giỏi toán giúp mình câu này với
giải phương trình: \(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)
\(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)
\(\Leftrightarrow\left[2\left(2x^2-6x+5\right)\right].\left(2x-3\right)^2=2.1\)
\(\Leftrightarrow\left(4x^2-12x+10\right)\left(2x-3\right)^2=2\)
\(\Leftrightarrow\left[\left(2x\right)^2-2.2x.3+3^2+1\right]\left(2x-3\right)^2=2\)
\(\Leftrightarrow\left[\left(2x-3\right)^2+1\right]\left(2x-3\right)^2=2\) (1)
Đặt \(\left(2x-3\right)^2=c\left(c\ge0\right)\)
Suy ra (1) trở thành: \(c\left(c+1\right)=2\)
\(\Leftrightarrow\left(c-1\right)\left(c+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}c-1=0\\c+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}c=1\\c=-2\end{cases}}}\)
Vì \(c\ge1\) nên c = 1
Hay \(\Rightarrow\left(2x-3\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2
P/s: Bài giải có nhiều sai sót, chị xem lại giúp em.
P/s: Chữ (h) nghĩa là "hoặc"
\(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)
Do 1 là số dương nên \(\left(2x^2-6x+5\right)\) và \(\left(2x-3\right)^2\) đồng dấu.
Mà \(\left(2x-3\right)^2\ge0\forall x\) nên chỉ cần xét 1 trường hợp:
\(\hept{\begin{cases}2x^2-6x+5=1\\\left(2x-3\right)^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2-6x+4=0\\2x-3=1..\left(h\right)..2x-3=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(x-2\right)\left(x-1\right)=0\\2x=4...\left(h\right)...2x=2\end{cases}}\Leftrightarrow x=2...\left(h\right)...x=1\)
Vậy x = 2 hoặc x = 1
\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)
\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)
\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)
\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)
\(\sqrt{2x+1}=3\)ĐK : x > = -1/2
\(\Leftrightarrow2x+1=9\Leftrightarrow2x=8\Leftrightarrow x=4\)( tm )
x=4 nha