K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

\(\sqrt{2x-1}\le2\)   

ĐK \(2x-1\ge0\)   

\(x\ge\frac{1}{2}\)   

\(\sqrt{2x-1}\le2\)   

\(2x-1\le2^2\)   

\(2x-1\le4\)   

\(2x\le5\)   

\(x\le\frac{5}{2}\)

11 tháng 6 2021

\(\sqrt{2x-1}\le2\)ĐK : \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)

\(\Leftrightarrow2x-1\le2\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)

Kết hợp với đk vậy \(\frac{1}{2}\le x\le\frac{3}{2}\)

\(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

30 tháng 11 2021

\(\left(\sqrt{2}-1\right)\sqrt{3+2\sqrt{2}}=\left(\sqrt{2}-1\right)\sqrt{2+2\sqrt{2}.1+1}=\left(\sqrt{2}-1\right)\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)=2-1=1\)

2 tháng 11 2016

ĐKXĐ : \(x\ge1\)

\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)

Xét các trường hợp : 

1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)

2. Nếu \(x>2\) thì 

\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

Gộp hai trường hợp có đpcm.

2 tháng 11 2016

Liệu còn cách nào khác nữa ko bạn???

\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)

\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)

2 tháng 7 2023

\(1,\sqrt{5x^2-2x+2}=x+1\)

\(\Leftrightarrow\left(\sqrt{5x^2-2x+2}\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow5x^2-2x+2=x^2+2x+1\)

\(\Leftrightarrow5x^2-x^2-2x-2x=1-2\)

\(\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

\(2,\sqrt{4x^2-x+1}-2x=3\)

\(\Leftrightarrow\left(\sqrt{4x^2-x+1}\right)^2=\left(3+2x\right)^2\)

\(\Leftrightarrow4x^2-x+1=9+12x+4x^2\)

\(\Leftrightarrow4x^2-4x^2-x-12x=9-1\)

\(\Leftrightarrow-13x=8\)

\(\Leftrightarrow x=-\dfrac{8}{13}\)

Vậy \(S=\left\{-\dfrac{8}{13}\right\}\)

1: =>x>=-1 và 5x^2-2x+2=x^2+2x+1

=>x>=-1 và 4x^2-4x+1=0

=>x=1/2

2: =>\(\sqrt{4x^2-x+1}=2x+3\)

=>x>=-3/2 và 4x^2-x+1=4x^2+12x+9

=>x>=-3/2 và -11x=8

=>x=-8/11(nhận)

14 tháng 7 2019

Có \(a+1+1\ge3\sqrt[3]{a}\)

     \(b+1+1\ge3\sqrt[3]{b}\)

\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)

\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)

\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)

"=" tại a=b=1

3 tháng 10 2021

À thui mình nghĩ ra roài

25 tháng 7 2015

Đặt \(a=\sqrt{2+x};\text{ }b=\sqrt{2-x}\Rightarrow a^2+b^2=4\)

\(A=\frac{\sqrt{2+ab}\left(a^3-b^3\right)}{a^2+b^2+ab}=\frac{\sqrt{2+ab}\left(a-b\right)\left(a^2+b^2+ab\right)}{a^2+b^2+ab}=\left(a-b\right)\sqrt{\frac{a^2+b^2}{2}+ab}\)

\(=\left(a-b\right)\sqrt{\frac{\left(a+b\right)^2}{2}}=\frac{\left(a-b\right)\left(a+b\right)}{\sqrt{2}}\)

\(=\frac{a^2-b^2}{\sqrt{2}}=\frac{\left(2+x\right)-\left(2-x\right)}{\sqrt{2}}=\frac{2x}{\sqrt{2}}=x\sqrt{2}\)