Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
binh rồi căn thì cứ chuyển bỏ dấu âm đi nó tương tự dấu giá trị tuyệt đối thôi
B=\(\sqrt{3+\sqrt{5}}\)-\(\sqrt{3-\sqrt{5}}\)-\(\sqrt{2}\)
B=\(\sqrt{\frac{1}{2}\left(6+2\sqrt{5}\right)}\)-\(\sqrt{\frac{1}{2}\left(6-2\sqrt{5}\right)}\)-\(\sqrt{2}\)
B=\(\sqrt{\frac{1}{2}\left(5+2\sqrt{5}.1+1\right)}\)-\(\sqrt{\frac{1}{2}\left(5-2\sqrt{5}.1+1\right)}\)-\(\sqrt{2}\)
B=\(\sqrt{\frac{1}{2}\left(\sqrt{5}+1\right)^2}\)-\(\sqrt{\frac{1}{2}\left(\sqrt{5}-1\right)^2}\)-\(\sqrt{2}\)
B=\(\frac{\sqrt{5}+1}{\sqrt{2}}\)-\(\frac{\sqrt{5}-1}{\sqrt{2}}\)-\(\sqrt{2}\)
B=\(\frac{2}{\sqrt{2}}\)-\(\sqrt{2}\)
B=\(\sqrt{2}\)-\(\sqrt{2}\)=0
Ta có :
\(B.\sqrt{2}=\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\right).\sqrt{2}\)
\(=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left|\sqrt{5}-1\right|-2=0\)
\(\Rightarrow B=0\)
B = \(\dfrac{3}{5}+\dfrac{3}{5^2}+\dfrac{3}{5^3}+...+\dfrac{3}{5^{2016}}\)
=> 5B = \(3+\dfrac{3}{5}+\dfrac{3}{5^2}+...+\dfrac{3}{5^{2015}}\)
=> 4B = \(3-\dfrac{3}{5^{2016}}\)
=> B = \(\dfrac{3-\dfrac{3}{5^{2016}}}{4}\)
@Nguyễn Đình Dũng có thể đưa ra kết quả chính xác được không?
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)
\(a=\sqrt{3+2\sqrt{2}+\sqrt{\left(\sqrt{2}-1\right)^2}}=\sqrt{3+2\sqrt{2}+\sqrt{2}-1}=\sqrt{2+3\sqrt{2}}\)
\(a^2=2+3\sqrt{2}\)
\(a^3=a^2.a=\left(2+3\sqrt{2}\right)\sqrt{2+3\sqrt{2}}\)
\(C=a^3\left(a^2-3\right)=\left(2+3\sqrt{2}\right)\sqrt{2+3\sqrt{2}}\left(2+3\sqrt{2}-3\right)\)\(=\left(2+3\sqrt{2}\right)\sqrt{2+3\sqrt{2}}\left(3\sqrt{2}-1\right)\)
lẻ quá
\(=\sqrt{\left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right)}\)
\(=\sqrt{\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2}\)
\(=\sqrt{12-18}\)
\(=\sqrt{-6}\) (vô lí)