Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị tham khảo ở đây ạ:
Câu hỏi của Vũ Thảo Vy - Toán lớp 9 - Học toán với OnlineMath
a)\(=\sqrt{\frac{5.5^2}{3^5.2^6}}=\sqrt{\frac{5}{3^5}}.\frac{5}{2^3}=\frac{5\sqrt{5.3^5}}{3^5.2^3}\)
b)\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)
\(=\frac{2\sqrt{5}}{\sqrt{6}}\)\(=\frac{\sqrt{30}}{3}\)
Câu c ttự
d)\(=\sqrt{2^8.5^2}=2^4.5=80\)
e)\(=\sqrt{\left(\frac{3}{4}\right)^2:\left(\frac{5}{6}\right)^2}=\frac{9}{10}\)
Ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(Nhân liên hợp)
Áp dụng vào bài toán,ta có:
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}\)
\(=\frac{9}{10}\)
1/((k+1)√k+k√(k+1))
=((k+1)√k-k√(k+1))/((k+1)^2.k-k^2(k+1)
=((k+1)√k-k√(k+1))/k(k+1)(k+1-k)
=1/√k-1/√(k+1)
1/(2+√2)=1-1/√2
1/(3√2+2√3)=1/√2-1√3
......
1/(100√99+99√100)=1/√99-1/√100
=>1/(2+√2)+1/(3√2+2√3)+......+1/(100√99+99√100)
=1-1/√2+1/√2-1√3+...+1/√99-1/√100
=1-1/√100=1-1/10=9/10
a, ĐK :a >= 3
\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)
\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)
b, \(ĐK:x\ge-\frac{1}{2}\)
\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow x=4\left(tm\right)\)
a) đk: \(a\ge3\)
pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)
\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)
\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)
Ta có : \(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\left(\sqrt{n+1}+\sqrt{n}\right)\) với \(n\in N^{\text{*}}\)
Áp dụng : \(\frac{1}{\sqrt{1}-\sqrt{2}}+\frac{1}{\sqrt{2}-\sqrt{3}}+...+\frac{1}{\sqrt{24}-\sqrt{25}}=-\left(\sqrt{1}+\sqrt{2}+\sqrt{2}+\sqrt{3}+...+\sqrt{24}+\sqrt{25}\right)\)
\(=...\)
Hình như đề sai.
\(=\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{6}{5}==\frac{5\cdot7\cdot6}{3\cdot5\cdot5}=\frac{14}{5}\)
\(\sqrt{2\frac{7}{9}\cdot}\sqrt{1\frac{24}{25}}\cdot\sqrt{\frac{36}{25}}\)
\(\Leftrightarrow\sqrt{\frac{25}{9}}\cdot\sqrt{\frac{49}{25}}\cdot\sqrt{\frac{36}{25}}\)
\(\Leftrightarrow\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{6}{5}\)\(=\frac{5\cdot7\cdot6}{3\cdot5\cdot5}=\frac{210}{75}=\frac{14}{5}\)