\(\sqrt{2016+\sqrt{2014+\sqrt{...+\sqrt{2}}}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

9 tháng 8 2020

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn

7 tháng 6 2018

a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)

Vậy \(\sqrt{25}+\sqrt{45}< 12.\)

b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)

\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)

Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)

\(=2013.2014+2014-2013.2014-2013=1>0\)

\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)

Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)

\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)

c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)

\(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)

\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)

Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)

Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)

\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)

Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)

7 tháng 6 2018

lop8. thi ap bdt nhu thanh song,

a)

VT=√25+√45<√2(25+45)=√140<√144=12=VP

b)

VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.

c) C=VT-VP

√2014+√2012-2√2012

kq(b)=> C<0

VT<VP

30 tháng 9 2015

Ta đặt \(x=2015\), khi đó \(2014=x-1,2016=x+1.\)  Ta có như sau

\(2014^2\cdot2016=\left(x-1\right)^2\left(x+1\right)=\left(x^2-1\right)\left(x-1\right)\)\(<\)\(x^2\cdot\left(x-1\right)\)\(<\)\(x^2\cdot x=2015^2\cdot2015\)

Suy ra \(2014^2\cdot2016<2015^2\cdot2015\to\sqrt{2014^2\cdot2016}<\sqrt{2015^2\cdot2015}\)

\(\to2014\cdot\sqrt{2016}<2015\cdot\sqrt{2015}\to\frac{2014}{\sqrt{2015}}<\frac{2015}{\sqrt{2016}}\to\frac{2014}{\sqrt{2015}}+1<\frac{2015}{\sqrt{2016}}+1\)

\(\to A<\frac{2015}{\sqrt{2016}}+1=\frac{2015+\sqrt{2016}}{\sqrt{2016}}=B\to A\)\(<\)\(B.\)

7 tháng 11 2017

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.

cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2

S = h * (a+b)1/2

Trong đó

a: Cạnh đáy 1

b: Cạnh đáy 2

h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)

Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:

S(ABCD) = 7 * (8+13)/2 = 73.5

cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3

Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:

S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

23 tháng 7 2018

I don't now

...............

.................

.

26 tháng 9 2015

a. Ta có \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\to\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\). Nhân liên hợp từng phân thức, ta có 

\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}<\frac{\sqrt{2015}-\sqrt{2014}}{\left(\sqrt{2015}+\sqrt{2014}\right)\left(\sqrt{2015}-\sqrt{2014}\right)}\)

\(\Leftrightarrow\sqrt{2016}-\sqrt{2015}<\sqrt{2015}-\sqrt{2014}\Leftrightarrow\sqrt{2016}+\sqrt{2014}<2\sqrt{2015}.\)

b.  Tiếp tục thực hiện các biến đổi liên hợp, ta có 

\(\sqrt{2008}-\sqrt{2005}+\sqrt{2009}-\sqrt{2007}=\frac{3}{\sqrt{2008}+\sqrt{2005}}+\frac{2}{\sqrt{2009}+\sqrt{2007}}\)

\(>\frac{3}{\sqrt{2015}+\sqrt{2010}}+\frac{2}{\sqrt{2015}+\sqrt{2010}}=\frac{5}{\sqrt{2015}+\sqrt{2010}}=\sqrt{2015}-\sqrt{2010}\)

Suy ra \(\sqrt{2008}-\sqrt{2005}+\sqrt{2009}-\sqrt{2007}>\sqrt{2015}-\sqrt{2010}\to\)

\(\to\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}.\)           (ĐPCM).