K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)

13 tháng 1 2021

Ta có:  √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

30 tháng 9 2015

Ta đặt \(x=2015\), khi đó \(2014=x-1,2016=x+1.\)  Ta có như sau

\(2014^2\cdot2016=\left(x-1\right)^2\left(x+1\right)=\left(x^2-1\right)\left(x-1\right)\)\(

19 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) :

Xét : \(N-M=2\sqrt{2014}-\left(\sqrt{2015}+\sqrt{2013}\right)\)

Theo bđt trên thì \(\frac{\sqrt{2013}+\sqrt{2015}}{2}\le\sqrt{\frac{2013+2015}{2}}\Leftrightarrow\sqrt{2013}+\sqrt{2015}\le2\sqrt{2014}\)

\(\Rightarrow N-M>0\Rightarrow N>M\)

8 tháng 6 2016

bình từng cái @

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

9 tháng 8 2020

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn