\(\sqrt{20}-\sqrt{21-4\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

`sqrt(20)-sqrt(21-4sqrt5)=2\sqrt5-sqrt((2\sqrt5)^2-2.2sqrt5 .1+1^2)=2\sqrt5-sqrt((2sqrt5-1)^2)=2sqrt5-2sqrt5+1=1`

`@` `\text {Ans}`

`\downarrow`

`\sqrt {20} -` \(\sqrt {21 - 4 \sqrt {5}}\)

`= 2 \sqrt {5} - \sqrt {20 + 1 - 4 \sqrt {5}}`

`= 2 \sqrt {5} - \sqrt {(2\sqrt {5})^2 - 2*2 \sqrt {5} + 1}`

`= 2 \sqrt {5} - \sqrt {(2 \sqrt {5} - 1)^2}`

`= 2 \sqrt {5} - 2 \sqrt {5} + 1`

`= 1`

1 tháng 12 2017

1) \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)

2)\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}-\sqrt{3}\)

3)\(\sqrt{6-2\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{9}-1\right)^2}\)

\(=\sqrt{5}-1-\left(\sqrt{9}-1\right)\)

\(=\sqrt{5}-\sqrt{9}\)

4)\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\sqrt{2}+1-\left(\sqrt{2-1}\right)=2\)

5) \(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)=2\sqrt{3}\)

6)\(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}-\left(3-\sqrt{2}\right)=2\sqrt{2}-1\)

7)\(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}=\sqrt{\left(\sqrt{20}-1\right)^2}+\sqrt{\left(\sqrt{20}+1\right)^2}\)

\(=\sqrt{20}-1+\sqrt{20+1}=2\sqrt{20}\)

17 tháng 6 2018

bài 3 sai kìa

NV
16 tháng 9 2019

1/\(\sqrt{8-2\sqrt{15}}-\sqrt{21-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)

Bạn tự làm tiếp

2/ \(\frac{4}{\sqrt{7-4\sqrt{3}}}-\frac{4}{7-4\sqrt{3}}=\frac{4}{\sqrt{\left(2-\sqrt{3}\right)^2}}-\frac{4}{\left(2-\sqrt{3}\right)^2}=\frac{4}{2-\sqrt{3}}-\frac{4}{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{8-4\sqrt{3}-4}{\left(2-\sqrt{3}\right)^2}=\frac{4-4\sqrt{3}}{\left(2-\sqrt{3}\right)^2}\) đến đây ko rút gọn được nữa, nghi bạn chép sai đề.

Tử số của phân số thứ hai là 4 hay 1 vậy?

3/ \(\frac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}}{\sqrt{6-2\sqrt{5}}}=\frac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{3+\sqrt{5}}{2}\)

4/ \(\frac{10}{\sqrt{\left(\sqrt{5}-2\right)^2}}-\frac{12}{\sqrt{\left(3+\sqrt{5}\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{3+\sqrt{5}}+\frac{20}{\sqrt{5}-1}\)

\(=\frac{10\left(\sqrt{5}+2\right)}{1}-\frac{12\left(3-\sqrt{5}\right)}{4}+\frac{20\left(\sqrt{5}+1\right)}{4}=16+18\sqrt{5}\)

17 tháng 3 2020

\(\frac{10}{\sqrt{5}-2.\sqrt{5}.2+4}-\frac{12}{\sqrt{\sqrt{5}+2.\sqrt{5}.3+9}}+\frac{20}{\sqrt{5-2.\sqrt{5}.1+1}}=\frac{10}{\left(\sqrt{5}-2\right)^2}-\frac{12}{\sqrt{\left(\sqrt{5}+3\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{\sqrt{5}+3}+\frac{20}{\sqrt{5}-1}=\frac{10\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right).\left(\sqrt{5}+2\right)}-\frac{12.\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right).\sqrt{5}-3\left(\right)}+\frac{20.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\frac{10\sqrt{5}-20}{5-4}-\frac{12\sqrt{5}-36}{5-9}+\frac{20\sqrt{5}+20}{5-1}\\=\frac{40\sqrt{5}-80+12\sqrt{5}+36+20\sqrt{5}+20}{4}=\\ 18\sqrt{5}-6\)

25 tháng 9 2018

Xin lỗ nhé thừa số 4 bé ở câu a

25 tháng 9 2018

\(a,\sqrt{2}+\sqrt{11}< \sqrt{3}+\sqrt{16}=\sqrt{3}+4\)

30 tháng 8 2018

Câu a : \(\left(\sqrt{80}+\sqrt{20}\right):\sqrt{45}=\sqrt{80}:\sqrt{45}+\sqrt{20}:\sqrt{45}=\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{4}{9}}=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)

Câu b : \(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{18}+\sqrt{27}\right)=\sqrt{54}+\sqrt{81}-\sqrt{36}-\sqrt{54}=\sqrt{81}-\sqrt{36}=9-6=3\)

Câu c : \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{15+3}}=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{18}}\)

\(=\sqrt{15}-\dfrac{6}{\sqrt{18}}=\dfrac{\sqrt{270}-6}{3\sqrt{2}}=\dfrac{3\sqrt{30}-6}{3\sqrt{2}}=\dfrac{3\left(\sqrt{30}-6\right)}{3\sqrt{2}}=\dfrac{\sqrt{30}-2}{\sqrt{2}}=\sqrt{15}-\sqrt{2}\)

17 tháng 12 2016

a, \(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=\left(-\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=-1\)

b.\(\sqrt{16+2\sqrt{16.5}+5}+\sqrt{16-2\sqrt{16.5}+5}=\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(4-\sqrt{5}\right)^2}=8\)

d,dat \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow A^2=4+\sqrt{7}+2\sqrt{16-7}+4-\sqrt{7}\)\(A^2=8+6=14\Rightarrow A=\sqrt{14}\)

C,\(\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}=\sqrt{17-4\left(2+\sqrt{5}\right)}=\sqrt{17-8-4\sqrt{5}}=\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)

2 tháng 7 2017

1) \(2\left(\sqrt{10}-\sqrt{2}\right).\sqrt{4+\sqrt{6-2\sqrt{5}}}=2\left(\sqrt{10}-\sqrt{2}\right).\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=2\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3+\sqrt{5}}=2\left(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)\)

\(=2\left(\sqrt{\left(5+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\right)=2\left(5+\sqrt{5}-\left(\sqrt{5}+1\right)\right)\) \(=2\left(5+\sqrt{5}-\sqrt{5}-1\right)=2.4=8\)

2) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=5-\sqrt{15}+\sqrt{15}-3=2\)

3) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(\left(\sqrt{21}+7\right)\left(\sqrt{7}-\sqrt{3}\right)=7\sqrt{3}-3\sqrt{7}+7\sqrt{7}-7\sqrt{3}=4\sqrt{7}\)