Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai
Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé
a, \(\sqrt{8}+\sqrt{18}-\sqrt{\frac{1}{2}}=2\sqrt{2}+3\sqrt{2}-\frac{1}{2}\sqrt{2}\)
\(=\frac{9}{2}\sqrt{2}\)
b, \(\frac{3-\sqrt{3}}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\sqrt{3}-1+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+1\right)\) \(=\frac{2\sqrt{2}-\left(\sqrt{2}+1\right)^2}{\sqrt{2}+1}\)
\(=\frac{2\sqrt{2}-2-2\sqrt{2}-1}{\sqrt{2}+1}=-\frac{2+1}{\sqrt{2}+1}\)
c, PT xác định với mọi x nha!
\(\sqrt{x^2-2x+1}=3\) \(\Rightarrow x^2-2x+1=9\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)
Vậy...
bạn tự kl
b: ĐKXĐ: y>=-1
Đặt \(\left\{{}\begin{matrix}x=a\\\sqrt{y+1}=b\left(b>=0\right)\end{matrix}\right.\)
Hệ phương trình sẽ trở thành:
2a+b=0 và 3a-2b=-7
=>4a+2b=0 và 3a-2b=-7
=>a=-1 và b=2
=>x=-1 và y+1=4
=>x=-1 và y=3
c: ĐKXĐ: x<>1 và y>=2
\(\left\{{}\begin{matrix}\dfrac{1}{x-1}=a\\\sqrt{y-2}=b\left(b>=0\right)\end{matrix}\right.\)
Hệ phương trình sẽ trở thành:
a+3b=1 và 2a-3b=2
=>3a=3 và a+3b=1
=>a=1 và b=0
=>x-1=1 và y-2=0
=>x=2 và y=2
d: ĐKXĐ: x<>0 và y>=-3
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\sqrt{y+3}=b\left(b>=0\right)\end{matrix}\right.\)
Hệ phương trình sẽ trở thành:
4a-b=2 và a+b=3
=>5a=5 và a+b=3
=>a=1 và b=2
=>x=1 và y+3=4
=>x=1 và y=1
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{14-8\sqrt{3}}\)\(=\sqrt{6-2.4.\sqrt{3}+8}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{3.16}+\left(\sqrt{8}\right)^2}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{48}+\left(\sqrt{8}\right)^2}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{8}\right)^2}\)
\(=\sqrt{6}-\sqrt{8}\)