Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{-6}{21}.\frac{3}{2}=-\frac{3}{7}\) b) \(\left(-3\right).\left(\frac{-7}{12}\right)=\frac{21}{12}=\frac{7}{4}\)
c) \(\left(\frac{11}{12}:\frac{33}{16}\right).\frac{3}{5}=\frac{11}{12}.\frac{16}{33}.\frac{3}{5}=\frac{4}{15}\)
d) \(\sqrt{\left(-7\right)^2}+\sqrt{\frac{2}{16}}=7+\sqrt{\frac{1}{8}}\)
c) \(\frac{1}{2}.\sqrt{100}-\sqrt{\frac{1}{16}}+\left(\frac{1}{3}\right)^0=\frac{1}{2}.10-\frac{1}{4}+1=5\frac{3}{4}\)
\(a)\) \(A=\frac{5\left(2^2.3^2\right)^9.\left(2^2\right)^6-2\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(A=\frac{2^{30}.3^{18}.5-2^{29}.3^{18}}{2^{28}.3^{18}.5-2^{29}.3^{18}.7}\)
\(A=\frac{2^{29}.3^{18}\left(2.5-1\right)}{2^{28}.3^{18}\left(5-2.7\right)}\)
\(A=\frac{2\left(10-1\right)}{5-14}\)
\(A=\frac{2.9}{-9}\)
\(A=-2\)
Vậy \(A=-2\)
\(b)\) \(B=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12}{4}:\frac{5}{6}\right].\frac{2}{9}\)
\(B=81.\frac{18}{5}.\frac{2}{9}\)
\(B=\frac{324}{5}\)
Vậy \(B=\frac{324}{5}\)
Chúc bạn học tốt ~ ( mỏi tay qué >_< )
Ờ đề thi học sinh giỏi cấp huyện của tớ đấy. Gì thì gì tớ cũng đã tự làm được trong thời gian suy nghĩ là 3 ngày. Toán không khó mới là chuyện lạ. Thôi cứ cố học thôi.
Ta có:
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1100}\right).\left(\frac{1}{3}+\frac{1}{2}-\frac{5}{6}\right)\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1100}\right).\left(\frac{5}{6}-\frac{5}{6}\right)\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1100}\right).0\)
\(=0\)
Ta có:
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1100}\right).\left(\frac{1}{3}+\frac{1}{2}-\frac{5}{6}\right)\)
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1100}\right).\left(\frac{5}{6}-\frac{5}{6}\right)\)
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1100}\right).0\)
\(=0\)
2/ \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=6-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=6-\left(1-\frac{1}{7}\right)\)
\(=6-\frac{6}{7}=\frac{36}{7}\)
1, \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\right)\)
\(=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)
\(=4-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)\)
\(=4-\left(1-\frac{1}{5}\right)\)
\(=4-\frac{4}{5}=\frac{16}{5}\)
[\(\frac{-75}{59}\).\(\frac{-107}{93}\)]\(\frac{31}{50}\)=\(\frac{2675}{1829}\).\(\frac{31}{50}\)=\(\frac{107}{118}\)
\(\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{1}{6}\cdot\frac{20}{3}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{6-15+\frac{2}{3}}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\left(-\frac{150}{107}\right)\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}=\frac{50}{31}\cdot\frac{31}{50}=1\)