Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
b) đề sai rồi nha
c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)
\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)
1.
a) \(A=\sqrt{1}-4a+4a^2-2a\)
\(A=4a^2-6a+1\)
b) \(B=\frac{5-x}{x^2-10x+25}=\frac{-\left(x-5\right)}{\left(x-5\right)^2}=\frac{-1}{x-5}\)
c) \(C=\sqrt{\left(x-1\right)^2}+\frac{x-1}{\sqrt{x^2-2x+1}}\)
\(C=\left|x-1\right|+\frac{x-1}{\sqrt{\left(x-1\right)^2}}=\left|x-1\right|+\frac{x-1}{\left|x-1\right|}\)
+) Xét \(x-1>0\Leftrightarrow x>1\)ta có \(C=x-1+\frac{x-1}{x-1}=x-1+1=x\)
+) Xét \(x-1< 0\Leftrightarrow x< 1\)ta có \(C=1-x+\frac{x-1}{1-x}=1-x-1=-x\)
2.
a) \(\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\sqrt{4-3}=1\)
b) \(\sqrt{3\sqrt{2}-2\sqrt{3}}\cdot\sqrt{3\sqrt{2}+2\sqrt{3}}\)
\(=\sqrt{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}\)
\(=\sqrt{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}\)
\(=\sqrt{18-12}=\sqrt{6}\)
c) Sửa luôn đề \(\sqrt{13-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{\left(2\sqrt{3}\right)^2-2\cdot2\sqrt{3}\cdot1+1}+\sqrt{2^2+2\cdot2\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|+\left|2+\sqrt{3}\right|\)
\(=2\sqrt{3}-1+2+\sqrt{3}\)
\(=3\sqrt{3}+1\)
tách 11 ra thành \(\sqrt{3}\) mũ 2 + căn 8 mũ 2
áp dụng hẳng đẳng thức đáng nhớ A^2+2AB +B^2=(A+B)^2
vào \(\sqrt{11+4\sqrt{6}}\)
.Bản thử đi nhé kết quả của mình là \(\sqrt{3}\)+\(\sqrt{8}\)
Vì ko gõ đc căn nên mình ko giải hẳn hoi ra đc .Bạn thông cảm ha.
Chúc bn hok tốt!
a,Ta có: \(A=\sqrt{\left(1-2a\right)^2}-2a\)
\(=\left|1-2a\right|-2a\)
+ Với \(a\le\dfrac{1}{2}\Rightarrow A=1-4a\)
+ Với \(a>\dfrac{1}{2}\Rightarrow A=-1\)
Vậy ....