Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé
a) Vì AB = AC => tam giác ABC cân tại A
Xét tam giác ABM và ACM có \(\hept{\begin{cases}AB=AC\\AM\\BM=MC\end{cases}chung}\)
=>\(\Delta ABM=\Delta ACM\)( c.c.c) ( đpcm)
b) Theo a) có \(\Delta ABM=\Delta ACM\) =.> \(\widehat{BAM}=\widehat{CAM}\)
=> AK là tia phân giác ....
c)Xét tam giác BEC và tam giác CEB có
BD = CE ( vì AB = AC mà AD=AE)
góc ABC=góc ACB (tam giác cân)
BC chung
=> tam giác ....= tam giác....(c.g.c)
=> góc EBC = góc DCB
=> tam giác BCK cân tại K
=> BK=KC
Xét tam giác AKB và tam giác AKC có
AB=AC
AK chung
BK=KC
=> tam giác ...=tam giác...(C.C.C)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK là tia phân giác góc ABC\(\)(1)
Mà AM là phân giác góc ABC(2)
Từ (1) và (2) => A,M,K thẳng hàng
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a:
Sửa đề: Chứng minh DE\(\perp\)BC
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Sửa đề: F là giao điểm của AB và DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC