K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

f = \frac{1}{T} = \frac{1}{0,063} = 15,873 (Hz)< 16 (Hz)\Rightarrow Hạ âm

23 tháng 8 2016

Ta có:
\Delta t = 2 \frac{h}{v}
\Rightarrow h = \frac{v\Delta t}{2} = \frac{1400.0,8}{2} = 560 (m)

20 tháng 4 2015

Tốc độ truyền âm của môi trường phụ thuộc vào 3 yếu tố:

+ Mật độ vật chất của môi trường

+ Tính đàn hồi của môi trường

+ Nhiệt độ và môi trường

Đáp án là A.

24 tháng 6 2016

 Xét tại điểm A ta có: L = 10.lg.I/I0 = 70. => lg.I/I0 = 7 => I/I0 = 10^7 => I = 10^-5W/m^2

31 tháng 7 2016

Khi đổ dần nước vào ống nghiệm đến độ cao 30cm thì thấy âm được khuyếch đại rất mạnh, có nghĩa là khi đó hiện tượng sóng dừng xảy ra, âm nghe được to nhất do tại đáy ống hình thành một nút sóng, miệng ống hình thành một bụng sóng. Mặt khác, nước cao 30cm thì cột không khí cao 50cm. Từ đó ta có:
\(300\left(\frac{1}{4.850+k\frac{1}{2.850}}\right)\le0,5=\)\(\frac{\lambda}{4}+k\frac{\lambda}{2}=v\left(\frac{1}{4f}+k\frac{1}{2f}\right)\le350\left(\frac{1}{4.850}\right)\)\(\Rightarrow1,93\le k\le2,33\Rightarrow k=2\)
\(\Rightarrow v=\frac{0,5}{\frac{1}{4.850+2.\frac{1}{2.850}}}=340\)
Từ đó dễ thấy \(\lambda\) = 40cm
Khi tiếp tục đổ nước vào ống thì chiều dài cột kí giảm dần, và để âm khuyếch đại mạnh thì chiều dài cột khí phải thỏa mãn
\(0< l=\frac{\lambda}{4}+k\frac{\lambda}{2}=10+k.20< 50\)
\(-0,5< k< 2\)
k = 0;1
Vậy khi đổ thêm nước vào thì có thêm 2 vị trí làm cho âm khuyếch đại rất mạnh 

chọn A

31 tháng 7 2016

Trước tiên ta thấy rằng trong ống lúc đổ nước và đến độ cao 30cm thì có sóng dừng giống sợi dây 1 đầu cố định, 1 đầu tự do.

Vậy ta có :  \(l=\left(2k+1\right)\lambda\Rightarrow\lambda=\frac{4l}{\left(2k+1\right)}\) (2)

Mặt khác ta có: \(v=\lambda f\) (1)

Từ (1) và (2) ta có:

\(v=\frac{4lf}{2k+1}=\frac{4\left(0,8-0,3\right)850}{2k+1}=\frac{1700}{2k+1}\)

Vì vận tốc truyền âm nằm trong khoảng:

\(300\le v\le500\Rightarrow300\le\frac{1700}{2k+1}\le350\Rightarrow1,9\le k\le2,3\Rightarrow k=2\)

Vậy vận tốc truyền âm và bước sóng của âm là:

\(v=\frac{1700}{2.2+1}=340\left(\frac{m}{s}\right)\Rightarrow\lambda=\frac{v}{f}=0,4m=40cm\)

Như vậy tính cả miệng ống thì có 3 bụng sóng. Vì:

\(l=\left(2n+1\right)\frac{\lambda}{4}\Rightarrow\pi=\frac{4.50}{2.40}-0,5=2\)

N = 2+1=3 Vậy sẽ có 3 vị trí.

Vậy B đúng

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

25 tháng 2 2016

Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên

 

\(Z_L-\frac{Z_C}{2,5}=R\)

 

Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì

 

\(Z_LZ_C=R^2+Z^2_L\)

 

\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)

 

Giải phương trình bậc 2 ta được

\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)

\(R=\frac{Z_L}{2}\)

 

Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền

 

Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)

 

\(\tan\alpha=\frac{R}{Z_L}=0,5\)

 

\(\sin\alpha=1\text{/}\sqrt{5}\)

 

\(U=U_C\sin\alpha=100V\)

 

\(U_o=U\sqrt{2}=100\sqrt{2}V\)

chọn C

25 tháng 2 2016

A

31 tháng 3 2016

Tia α phóng ra từ hạt nhân với tốc độ bằng 20 000 m/s.

19 tháng 8 2016

Gọi H là đường chân cao hạ từ O đến MN

Giả sử OH = 1 → OM \(=\sqrt[4]{10};ON=\sqrt{10}\)

Do đó tính \(\widehat{MON}\approx1270,35^o\) 

A đúng

 

19 tháng 8 2016

M Q N O

L_Q - L_M = 5 = 10.lg (\frac{OM}{OQ})^2 \Rightarrow \frac{OM}{OQ} = 10^{0,25}

= \frac{1}{Cos \angle QOM}\Rightarrow \angle QOM = 55,78^0

Ta có: L_Q - L_N = 10 = 10.lg (\frac{ON}{OQ})^2

\Rightarrow \frac{ON}{OQ} = 10^{0,5} = \frac{1}{Cos \angle QON}

\Rightarrow \angle QON = 71,56^0

\Rightarrow (\overline{OM}, \overline{ON}) = \angle QOM + \angle QON=127^0