Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-2,6)*x+4,3*x-6,3=-4,6
(-2,6+4,3)*x-6,3=-4,6
1,7*x-6,3=-4,6
1,7*x=-4,6+6,3
1,7*x=1,7
x=1,7:1,7
x=1
:
\(\left|x-2,5\right|+\left|3,5-x\right|=0\)
ta có \(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
nên \(\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
để \(\left|x-2,5\right|+\left|3,5-x\right|=0\) thì \(\hept{\begin{cases}x-2,5=0\\3,5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)(vô lí)
vì x không thể xuất hiện 2 lần trong 1 trường hợp vậy x có 0 phần tử thỏa mãn yêu cầu đề bài đã cho.
\(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
\(\Rightarrow\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
Do vậy
\(\hept{\begin{cases}\left|x-2,5\right|=0\\\left|3,5-x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)( vô lý )
Vậy có 0 phần tử của tập hợp các số x thỏa mãn đề bài
Ta có: \(f\left(671.3+1\right)=\left(671-670\right)\left(671-672\right)\Rightarrow f\left(2014\right)=1.\left(-1\right)=-1\)
Ta có: \(3x+1=2014\)
\(\Rightarrow3x=2013\)\(\Rightarrow x=671\)
Thay \(x=671\)vào hàm số trên ta được:
\(\left(671-670\right).\left(671-672\right)=1.\left(-1\right)=-1\)
Vậy \(f\left(2014\right)=-1\)
Ta có: \(\left(0+1\right).f\left(0\right)+3f\left(1-0\right)=2.0+7\)
\(\Rightarrow f\left(0\right)+3f\left(1\right)=7\Rightarrow3f\left(0\right)+9f\left(1\right)=21\) (1)
\(\left(1+1\right)f\left(1\right)+3f\left(1-1\right)=2.1+7\)
\(\Rightarrow2f\left(1\right)+3f\left(0\right)=9\)(2)
Từ (1) và (2) ta được: \(3f\left(0\right)+9f\left(1\right)-2f\left(1\right)-3f\left(0\right)=21-9\)
\(\Rightarrow7f\left(1\right)=12\Rightarrow f\left(1\right)=\frac{12}{7}\)
Khi đó: \(f\left(0\right)=7-3f\left(1\right)=7-3.\frac{12}{7}=\frac{13}{7}\)
Ta có: \(f\left(4^3+1\right)=4^2-4.3\Rightarrow f\left(65\right)=4\)
Ta có: \(x^3+1=65\)
\(\Rightarrow x^3=64\)\(\Rightarrow x=4\)
Thay \(x=4\)vào hàm số ban đầu ta được
\(f\left(65\right)=4^2-3.4=16-12=4\)
Vậy \(f\left(65\right)=4\)