Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin\left(2x+\frac{\pi}{3}\right)=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\2x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
Có 4 điểm biểu diễn
bạn có thể vẽ đường tròn lượng giác hoặc lý giải vì sao có 4 điểm biểu diễn được không ạ
\(tan\left(2x-\frac{\pi}{3}\right)=-\sqrt{3}\Rightarrow2x-\frac{\pi}{3}=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{k\pi}{2}\)
Có 4 điểm biểu diễn trên đường tròn lượng giác
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(tan^2x-4tanx+3=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(tanx-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}tanx=1\\cotx=\frac{1}{3}\end{matrix}\right.\)