K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{n}>0,65\)

\(\Leftrightarrow\dfrac{1}{n}>\dfrac{3}{20}\Leftrightarrow\dfrac{20}{20n}>\dfrac{3n}{20n}\Rightarrow20>3n\Rightarrow n< 7\)

vậy n = 6

19 tháng 3 2017

\(\dfrac{1}{2}+\dfrac{1}{n}>\dfrac{1}{4}+\dfrac{2}{5}\\\)

<=> \(0.5+\dfrac{1}{n}>0.25+0.4\) <=> \(0.5+\dfrac{1}{n}>0.65\) <=> 1/n >0.15 <=>n=6

22 tháng 11 2018

a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)

\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)

\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)

b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)

Ta có:

\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)

\(B< \dfrac{2n}{4n+2}\)

\(B< \dfrac{2n}{2\left(2n+1\right)}\)

\(B< \dfrac{n}{2n+1}\)

\(\Leftrightarrow\dfrac{4\cdot90\cdot\left(x+5\right)-4\cdot90\cdot x}{4x\left(x+5\right)}=\dfrac{x\left(x+5\right)}{4x\left(x+5\right)}\)

\(\Leftrightarrow x^2+5x-1800=0\)

\(\text{Δ}=5^2-4\cdot1\cdot\left(-1800\right)=7225>0\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-5-85}{2}=\dfrac{-90}{2}=-45\left(nhận\right)\\x_2=\dfrac{-5+85}{2}=40\left(nhận\right)\end{matrix}\right.\)

13 tháng 1 2021

Ta có kết quả tổng quát hơn như sau:

Cho $a,b,c \neq 0$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.$

Chứng minh rằng $$S={\frac {k{a}^{2}-k-1}{{a}^{2}+2\,bc}}+{\frac {{b}^{2}k-k-1}{2\,ac+{b}^{2}}}+{\frac {{c}^{2}k-k-1}{2\,ab+{c}^{2}}}=k$$

6(1-x)+4(2-x)<=3(1-3x)

=>6-6x+8-4x<=3-9x

=>-10x+14<=-9x+3

=>-x<=-11

=>x>=11

(1-2x)/4-2<-5x/8

=>2-4x-16<-5x

=>-4x-14<-5x

=>x<14

Số tự nhiên x thỏa mãn cả hai BPT khi và chỉ khi 11<=x<14

=>\(x\in\left\{11;12;13\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

15 tháng 3 2023

a) \(2x-6=0\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=\dfrac{6}{2}=3\)

b) \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

15 tháng 3 2023

còn câu c) d) nữa bạn ơi

 

23 tháng 3 2022

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 

26 tháng 8 2017

Với mọi k thuộc N và k > 2 thì ta có :

\(1-\frac{1}{1+2+....+k}=1-\frac{1}{\frac{k\left(k+1\right)}{2}}=1-\frac{2}{k\left(k+1\right)}=\frac{k^2+k-2}{k\left(k+1\right)}=\frac{\left(k+2\right)\left(k-1\right)}{k\left(k+1\right)}\)

Áp dụng vào A ta được :

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+....+n}\right)\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(=\frac{\left[1.2.3....\left(n-1\right)\right]\left[4.5.6.....\left(n+2\right)\right]}{\left(2.3.4......n\right)\left[3.4.5.....\left(n+1\right)\right]}\)

\(=\frac{n+2}{n.3}=\frac{n+2}{3n}\)

9 tháng 3 2017

Chi tiết, và chuẩn đúng toán học. " dãy số hiểu n thuộc N*"

*)với n=1 ta có: \(A=\dfrac{1}{1+1}=\dfrac{1}{2}=B\)

*) với n>1 ta có: \(\dfrac{1}{n+1}>\dfrac{1}{2n}\) {c/m: không quá khó bỏ qua}. áp vào từng số hạng VT:

vậy ta có:\(A=\left(\dfrac{1}{n+1}+..+\dfrac{1}{2n}\right)>n.\dfrac{1}{2n}=\dfrac{1}{2}=B=VP\)

Kết luận:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}n=1\\A=B\end{matrix}\right.\\\left\{{}\begin{matrix}n\ne1\\A>B\end{matrix}\right.\end{matrix}\right.\) hoặc \(KL:A\ge B..\forall n\in N^o\)

9 tháng 3 2017

\(A>B\)