Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
N =2019+2020/2020+2021
=2019/2020+2021 + 2020/2020+2021
Ta có:
2019/2020>2019/2020+2021
2020/2021 > 2020/2020+2021
=>M>N
\(B=\frac{2018+2019}{2019+2020}\)
\(\Rightarrow B=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
\(\Rightarrow B< \frac{2018}{2019}+\frac{2019}{2020}=A\)
Vậy B < A
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow B< \frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}=A\)
Vậy B < A
a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)
= am + m + .... + m (có n hạng tử m)
= am.n (đpcm)
b) Ta có 5333 = 53.111 = (53)111 = 125111
3555 = 35.111 = (35)111 = 243111
Nhận thấy 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b) Ta có 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
Đáp án cần chọn là: C