Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu số cần tìm cộng thêm 1 thì sẽ chia hết cho 2, 3, 4, 5
=> Số bé nhất chia hết cho cả 2; 3; 4; 5 là BSCNN(2;3;4;5)=60
=> số cần tìm là 60-1=59
Gọi số tự nhiên cần tìm là: \(x\)(\(x\in N\))
Theo đề bài, ta có:
x chia 2 dư 1
x chia 3 dư 2
x chia 4 dư 3
x chia 5 dư 4
Từ đó, suy ra:
\(\left(x+1\right)⋮2\)
\(\left(x+1\right)⋮3\)
\(\left(x+1\right)⋮4\)
\(\left(x+1\right)⋮5\)
Vì x là số tự nhiên bé nhất nên x+1= BCNN(2;3;4;5)
\(\Rightarrow x+1=60\)
\(\Rightarrow x=59\)
Vậy số tự nhiên cần tìm là: \(59\)
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên: a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Kết quả là 61