K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

 số thực là số được định nghĩa từ các thành phần của chính nó, trong đó tập hợp số thực được coi như là hợp của tập hợp các số vô tỉ với tập hợp số hữu tỉ. Số thực có thể là số đại số hoặc số siêu việt. Tập hợp số thực được đặt làm đối trọng với tập hợp số phức.

ví dụ 2 ; 5 ; -8 ; 0 ; -26 ;..... 

3 tháng 12 2017

thanks nha

11 tháng 2 2018

 Đơn thức là biểu thức đại số mà trong đó chỉ chứa phép toán nhân và nâng lên lũy thừa (Không có phép toán trừ, chia): VD: 2xy; 1/3x²y³ hoặc x³y.. 

20 tháng 10 2016

- Số vô hạn tuần hoàn là số thực

- Phải . VD : So huu ti : + So duong : 1,2,3,4,5,6,.....

                                   + So 0

                                   + So am : -32, -56, -145,...

                                   + Phan so ; 3/4, 5/89/ 78/4

                    So vo ti : + So pi : 3,14159265358979

                                  + Can bac hai : \(\sqrt{25}\)\(\sqrt{36}\),...

20 tháng 10 2016

- có

-có 

ví dự: số tự nhiên, (1.2.4..)

số hưu tỷ (2/5,3/4..)

số vô tỷ (1/3. 2/9..)

số siêu việt ( pi, e ....)

4 tháng 11 2017

Trong toán học, các số thực có thể được mô tả một cách không chính thức theo nhiều cách. Số thực bao gồm cả số dương, số 0 và số âm, số hữu tỉ, chẳng hạn 42 và -23/129, và số vô tỉ, chẳng hạn số pi và căn bậc hai của 2; số thực có thể được xem là các điểm nằm trên một trục số dài vô hạn.[1]

Như vậy, số thực là số được định nghĩa từ các thành phần của chính nó, trong đó tập hợp số thực được coi như là hợpcủa tập hợp các số vô tỉ với tập hợp số hữu tỉ. Số thực có thể là số đại số hoặc số siêu việt. Tập hợp số thực được đặt làm đối trọng với tập hợp số phức.

4 tháng 11 2017

Trong toán học, các số thực có thể được mô tả một cách không chính thức theo nhiều cách. Số thực bao gồm cả số dương, số 0 và số âm, số hữu tỉ, chẳng hạn 42 và -23/129, và số vô tỉ, chẳng hạn số pi và căn bậc hai của 2; số thực có thể được xem là các điểm nằm trên một trục số dài vô hạn.

Như vậy, số thực là số được định nghĩa từ các thành phần của chính nó, trong đó tập hợp số thực được coi như là hợp của tập hợp các số vô tỉ với tập hợp số hữu tỉ. Số thực có thể là số đại số hoặc số siêu việt. Tập hợp số thực được đặt làm đối trọng với tập hợp số phức.

Tính chất: Tập hợp số thực là tập hợp của số hữu tỉ (bao gồm số nguyên và số thập phân): 1;-1;0,1;21,2323232323... (số thập phân vô hạn tuần hoàn) và số vô tỉ (số thập phân vô hạn không tuần hoàn): số pi (3,141592...),căn hai (1,414214...). Như vậy, số thực chỉ là tên gọi chung của những số trên. Có thể coi số thực là đại số, số siêu việt,....Phân biệt số thực với số phức
 

5 tháng 11 2017

Trong toán học, các số thực có thể được mô tả một cách không chính thức theo nhiều cách. Số thực bao gồm cả số dương, số 0 và số âm, số hữu tỉ, chẳng hạn 42 và -23/129, và số vô tỉ, chẳng hạn số pi và căn bậc hai của 2; số thực có thể được xem  các điểm nằm trên một trục số dài vô hạn. Được kí hiệu là \(R\)

5 tháng 11 2017

Số hữu tỉ và số vô tỉ được gọi chung là số thực.

Tập hợp các số thực được kí hiệu là R: R=Q U I.


 

31 tháng 10 2016

Đáp án đúng là:

a ) Đ

b ) Đ

c ) Đ

d) S

31 tháng 10 2016

Đáp số đúng là:

a) Đ

b) Đ

c) Đ

d) S

8 tháng 5 2021

Những biểu thức bao gồm các phép toán cộng, trừ, nhân, chia, nâng lên lũy thừa không chỉ trên những số mà còn có thể trên những chữ (đại diện cho các số) được gọi là biểu thức đại số.

VD : 3x - 1 , ....

8 tháng 5 2021

Những biểu thức bao gồm các phép toán cộng, trừ, nhân, chia, nâng lên lũy thừa không chỉ trên những số mà còn có thể trên những chữ (đại diện cho các số) được gọi là biểu thức đại số. Ví dụ: 2x−5 2 x − 5 ; ax2+bx+c a x 2 + b x + c ; 2x+11 2 x + 11

15 tháng 6 2016

số thực là số được định nghĩa từ các thành phần của chính nó, trong đó tập hợp số thực được coi như là hợp của tập hợp các số vô tỉ với tập hợp số hữu tỉ. Số thực có thể là số đại số hoặc số siêu việt. Tập hợp số thực được đặt làm đối trọng với tập hợp số phức.

15 tháng 6 2016

Số hữu tỉ và số vô tỉ được gọi chung là số thực.

Ví dụ : 2; \(\frac{3}{5}\); -0,234; \(-3\frac{1}{7}\)\(\sqrt{2}\); ... là các số thực