Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(324=48+276=48+\sqrt{76176}>48+\sqrt{120}\)
nên \(\sqrt{48+\sqrt{120}}< 18\)
b: \(\left(\sqrt{23}+\sqrt{15}\right)^2=38+2\cdot\sqrt{345}\)
\(\left(\sqrt{91}\right)^2=91=38+53=38+\sqrt{2809}\)
mà \(2\sqrt{345}< \sqrt{2809}\)
nên \(\sqrt{23}+\sqrt{15}< \sqrt{91}\)
a) Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Vì \(\sqrt{16}>\sqrt{14};\sqrt{33}>\sqrt{29}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
b) Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}\)
4 > căn 14 , căn 33 > căn 29
=> 4+ căn 33 > căn 29 + căn 14
a, Ta có: \(\sqrt{36}=6\)
Vì \(36>35\Rightarrow\sqrt{36}>\sqrt{35}\) hay \(6>\sqrt{35}\)
Bài 1 :
\(a)\)\(A=\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}< \sqrt{91}=B\)
Vậy \(A< B\)
\(b)\)\(A=\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}=B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(A=\frac{3\sqrt{x}+3}{\sqrt{x}-2}=\frac{3\sqrt{x}-6}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=3+\frac{9}{\sqrt{x}-2}\)
Để A nguyên \(\Rightarrow\)\(9⋮\sqrt{x}-2\)\(\Rightarrow\)\(\sqrt{x}-2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
\(\sqrt{x}-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(x\) | \(9\) | \(1\) | \(25\) | \(\varnothing\) | \(121\) | \(\varnothing\) |
Vậy để A nguyên thì \(x\in\left\{1;9;25;121\right\}\)
Mấy câu còn lại tương tự
Chúc bạn học tốt ~
Vì căn bậc 2 của 23 < căn bậc 2 của 25=5^2
căn bậc 2 của 15 <căn bậc 2 của 16=4^2
mà căn bậc 2 của 91 > căn bậc 2 của 81=9^2
Vậy căn bậc 2 của 91 > căn bậc 2 của 23 + căn bậc 2 của 15
\(\sqrt{23}+\sqrt{15}=8,66881487\)
\(\sqrt{91}=9,539392014\)
Vậy: \(\sqrt{23}+\sqrt{15}< \sqrt{91}\)