K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                \(=2.2018+2\sqrt{2018^2-1}< 2.2018+2.2018=4.2018\)

Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2< 4.2018\)

\(\Rightarrow\sqrt{2017}+\sqrt{2018}< 2.\sqrt{2018}\)

Tham khảo nhé~

1 tháng 8 2018

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

9 tháng 10 2020

Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)

Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))

Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)

8 tháng 10 2021

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

18 tháng 10 2021

Ta có: \(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015.2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016.2017}\)

\(2015.2018=2015.2017+2015=2017\left(2015+1\right)-2017+2015=2017.2016-2\)\(\Rightarrow2015.2018< 2016.2017\)

\(\Rightarrow4033+2\sqrt{2015.2018}< 4033+2\sqrt{2016.2017}\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\left(đpcm\right)\)

18 tháng 10 2021

Đặt \(A=\sqrt{2015}+\sqrt{2018}\Rightarrow A^{^2}=4033+2\sqrt{2015.2018}\)

\(B=\sqrt{2016}+\sqrt{2017}\Rightarrow B^{^2}=4033+2\sqrt{2016.2017}\)

Ta có: 2015.2018 = 2015.2017 + 2015

2016.2017 = 2015.2017 + 2017

Dễ dàng thấy được 2015.2018 < 2016.2017 => A2 < B2

=> A < B

2 tháng 1 2018

theo em là A=B

em mới học lớp 5 thôi chưa chắc đúng đâu

2017=2017

2018 hơn 2016 là 2 đơn vị

2017 lớn hơn 2016 là 1 đơn vị

2017 lớn hơn 2016 1 đơn vị

A hơn B số đăn vị là:

2-(1+1)=0

Nên A=B

2 tháng 1 2018

thanks em nha anh sẽ xem lại

Ai có kết quả nữa thì giúp mình nha

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

Câu GPT: bạn xem lại đề bài.

Câu so sánh

Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:

\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)

\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)

15 tháng 7 2018

\(\sqrt{2017}< \sqrt{2018}< \sqrt{2019}\)

23 tháng 9 2018

\(2017< 2018< 2019\) nên \(\sqrt{2017}< \sqrt{2108}< \sqrt{2019}\)