Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
=\(\sqrt{15^2-2\cdot15\cdot\sqrt{2}+2}+\sqrt{11^2+2\cdot11\cdot\sqrt{2}+2}\)
=\(\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)}^2\)
=\(15-\sqrt{2}+11+\sqrt{2}\)
=26
c)
=\(\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}\left(\sqrt{5}+2\right)\)
=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}}\)
a) 5 và 3√123:
Ta có 5 = 3√125; vì 125 > 123 ⇒ 3√125 > 3√123.Vậy 5 > 3√123
b) Ta có:
53\(\sqrt{ }\)6 = 3\(\sqrt{ }\)53.6 = 3\(\sqrt{ }\)125.6 = 3\(\sqrt{ }\)750
63\(\sqrt{ }\)5 = 3\(\sqrt{ }\)63.5 = 3\(\sqrt{ }\)216.5 = 3\(\sqrt{ }\)1080
Vì 750 < 1080 \(\Rightarrow\)3\(\sqrt{ }\)750 < 3\(\sqrt{ }\)1080 . Vậy 53\(\sqrt{ }\)6 < 63\(\sqrt{ }\)5.
a) \(\sqrt[3]{123}\) và \(5\)
Ta có : \(5^3=125\)
\(\left(\sqrt[3]{123}\right)^3=123\)
Vì \(125>123\)
\(\implies\) \(\sqrt[3]{125}>\sqrt[3]{123}\)
\(\iff\) \(5>\sqrt[3]{123}\)
Vậy \(5>\sqrt[3]{123}\)
b) \(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\)
Ta có : \(\left(5\sqrt[3]{6}\right)^3=5^3.\left(\sqrt[3]{6}\right)^3=125.6=750\)
\(\left(6\sqrt[3]{5}\right)=6^3.\left(\sqrt[3]{5}\right)^3=216.5=1080\)
Vì \(750< 1080\)
\(\implies\)\(\sqrt[3]{750}< \sqrt[3]{1080}\)
\(\iff\) \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
Vậy \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
* \(4\)và \(1+2\sqrt{2}\)
Ta có \(3=\sqrt{9}\)
\(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)
Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)
Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
Ta có
\(\sqrt{123-22\sqrt{2}}=11-\sqrt{2}\)
\(\sqrt[3]{77\sqrt{2}-115}=\sqrt{2}-5\)
\(\Rightarrow\sqrt{123-22\sqrt{2}}+\sqrt[3]{77\sqrt{2}-115}=11-\sqrt{2}+\sqrt{2}-5=6\)