Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)
\(B=\frac{135\cdot268-133}{134\cdot269+135}=\frac{\left(134+1\right)\cdot268-133}{134\cdot269+135}=\frac{134\cdot268+268-133}{34\cdot269+135}=\frac{134\cdot268+135}{134\cdot269+135}=1\)
Vì 1=1 nên A=B
A= (54.107-53)/(53.107+54)
= (53+1).107-53 / 53.107+54
=53.107+107-53 / 53.107+54
=53.107+54 / 54.107 + 54
=1
B= 135.269-133 / 134.269+135
= (134+1).269-133 / 134.269+135
= 134.269+269-133 / 134.269+135
=134.269+136 / 134.269+135
=134.269+135/ 134.269+135 + 1/134.269+135
=1 + 1/134.269+135 >1=A
\(A=\frac{54.107-53}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}>1\)
\(A=\frac{54.107-53}{53.107+54}<\frac{135.269-133}{134.269+135}\)
bạn gạch các số giống nhau ở mỗi phân số rồi so sánh:
A= bạn bỏ 54, 53 và 107 (bỏ hết) thì còn 1
b= bạn gạch bỏ 135, 269 thì còn 133 và 134
1 vs\(\frac{133}{134}\)(133;134 1>\(\frac{133}{134}\)
=3 mình nghĩ z
\(A=\frac{54.107-53}{53.107+107-53}=\frac{54.107-53}{54.107-53}=1\)
\(B=\frac{135.269-133}{134.269+269-134}=\frac{135.269-133}{135.269-134}\)
ta dễ dàng thấy \(-133>-134\Leftrightarrow135.269-133>135.269-134\)
\(\Leftrightarrow\frac{135.269-133}{135.269-134}>1\)
\(\Leftrightarrow B>A\)
\(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{299.302}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..+\frac{3}{299.302}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{299}-\frac{1}{302}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{302}\right)=2.\frac{75}{151}=\frac{150}{151}\)
\(A=\frac{54.107-53}{53.107+54}=\frac{\left(53+1\right).107-53}{53.107+54}\)
\(=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{\left(134+1\right)269-133}{134.269+135}\)
\(=\frac{134.269+269-133}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow B>A\)
\(M=\dfrac{54.107-53}{53.107-54}=\dfrac{53\left(107-1\right)+107}{53\left(107-1\right)-1}=\dfrac{53.106-1+108}{53.106-1}=1+\dfrac{108}{53.106-1}\)
\(N=\dfrac{135.269-133}{134.269-135}=\dfrac{134\left(269-1\right)-1+270}{134\left(269-1\right)-1}=1+\dfrac{270}{134.268-1}\)
\(M-N=\dfrac{108}{53.106-1}-\dfrac{270}{134.268-1}\)
\(M-N=\dfrac{2}{2.53^2-1}-\dfrac{5}{8.67^2-1}>\dfrac{5}{10.53^2-1}-\dfrac{5}{8.67^2-1}>0\)
M>N