Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)
có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)
nên :
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< 1-\frac{1}{2011}\)
\(\Rightarrow A< \frac{2010}{2011}< 1\)
b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
\(\frac{1}{4}>\frac{1}{2011}\)
nên :
\(A>\frac{3}{4}\)
\(Giải\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)
\(A=0+0+0+...+0+0\)
\(\Rightarrow A=0\)
\(a.\)\(A< 1\)
b. \(A< \frac{3}{4}\)
ta co
1/2.2<1/1*2
...
1/2018*2018<1/2017*2018
=>1/2*2+...+1/2018*1018<1/1*2+...+1/2017.2018
.....(tinh 1/1*2+...+1/2017.*2018)
=>1/2*2+...+1/2018*2018<1-1/2018<1
=>1/2*2+...+1/2018*2018<1
A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
A * 2 = 1 - 1/ 729
A * 2 = 1/728
A = 1/728 : 2
A = 2/728
Nếu không quy đồng Mẫu thì ta quy đồng Tử
P/S: 2/728 VÀ 1/2
1/2 = 1*2/ 2*2
= 2/4
So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.
Vậy 1/2 > A
Đ/S: A = 2/728
1/2 > A
\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)
\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)
\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)
\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)
\(\frac{1}{4}\)+ \(\frac{1}{9}\)+ \(\frac{1}{16}\)+...+ \(\frac{1}{2401}\)+ \(\frac{1}{2500}\)
Dãy số trên có :
50 - 2 + 1 = 49 số hạng
Tổng các tử số của sô hạng trên là :
1 x 49 = 49
Mà 49 < 2401; (2401 là mấu cố số hạng kế cuối cùng) mà 2401 : 49 = 49
Kết luận tổng dãy số trên có tử số < mẫu số -> tổng dãy số bé hơn 1
Dấu cần điền "<"
=1/2 -1/2 +1/3 -1/3 +....+1/50 -1/50=0
0<1
suy ra 1/2*2 +1/3*3 +.....+1/49*49 +1/50*1/50 <1
không chắc lắm nhưng nếu muốn bạ có thể tính "tổng xích ma" trên máy tích cầm tay casio fx 720
\(A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(A>\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2015-2014}{2014.2015}\)
\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(A>1-\frac{1}{2015}\)
Mà \(\frac{1}{2015}< \frac{1}{4}\Rightarrow1-\frac{1}{2015}>1-\frac{1}{4}=\frac{3}{4}\Rightarrow A>\frac{3}{4}\)