K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

Ta có: \(\sqrt{2022}-\sqrt{2021}=\dfrac{2022-2021}{\sqrt{2022}+\sqrt{2021}}=\dfrac{1}{\sqrt{2022}+\sqrt{2021}}\)

Ta có: \(\sqrt{2022}+\sqrt{2021}>1\Rightarrow\dfrac{1}{\sqrt{2022}+\sqrt{2021}}< 1\)

\(\Rightarrow\sqrt{2022}-\sqrt{2021}< 1\)

17 tháng 6 2017

1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5   4^2=16 vậy căn 11+căn 5=4

2/ tương tự (3 căn3 )^2=27   (căn19)^2-(căn 2)^2=19-2=17  vậy 3 căn 3 >căn 19-căn2

27 tháng 9 2017

a) Ta có: 
√2005 + √2003 > √2002 + √2000 
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000) 
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000) 
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000) 
<=> √2005 - √2003 < √2002 - √2000 
<=> √2005 + √2000 < √2002 + √2003 

b) Tương tự câu a 
√(a + 6) + √(a + 4) > √(a + 2) + √a 
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a] 
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a] 
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a] 
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a 
<=> √(a + 6) + √a < √(a + 4) + √(a + 2) 
đúng ko ?

27 tháng 9 2017

hình như nó sai cái gì a

6 tháng 8 2019

-1 có căn k bạn?

39 < 103

11 tháng 9 2020

\(B=\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}=\frac{2^2-\left(\sqrt{2+\sqrt{2+\sqrt{2}}}\right)^2}{\left(2-\sqrt{2+\sqrt{2}}\right)\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

\(=\frac{2-\sqrt{2+\sqrt{2}}}{\left(2-\sqrt{2+\sqrt{2}}\right)\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

\(=\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}\)

11 tháng 9 2020

Cho mình bổ sung nha, nãy bấm nhầm gửi lun

Xét \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow\sqrt{2+\sqrt{2}}< 2\Rightarrow2+\sqrt{2+\sqrt{2}}< 4\)

\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2}}}< 2\Rightarrow2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 4\)

\(\Rightarrow\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)

\(\Rightarrow B>\frac{1}{4}\)

15 tháng 6 2018

1 + căn 15 ......căn 24

4.872983346...\(\approx\) 4.872    và 4.898979486...\(\approx\)4.898

=> 4.872 < 4.898

=> 1 + căn 15 < căn 24

15 tháng 6 2018

Tham khảo nhé ~.~ 

Ta có : 

\(\left(1+\sqrt{15}\right)^2=1+2\sqrt{15}+15=16+2\sqrt{15}\)

\(\left(\sqrt{24}\right)^2=24=16+8=16+2.4=16+2\sqrt{16}\)

Ta thấy \(16+2\sqrt{15}< 16+2\sqrt{16}\) nên \(\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)

\(\Rightarrow\)\(1+\sqrt{15}< \sqrt{24}\)

Vậy \(1+\sqrt{15}< \sqrt{24}\)

Chúc bạn học tốt ~