\(\frac{10^{19}+1}{10^{20}+1}\)và  B=\(\frac{10^{20}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)

NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

VẬY B<A

23 tháng 9 2019

đặt \(A=\frac{10^{18}+1}{10^{19}+1};B=\frac{10^{19}+1}{10^{20}+1}\)

ta có: \(10A=\frac{10^{19}+1+9}{10^{19}+1}=1+\frac{9}{10^{19}+1}\)

\(10B=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)

mà \(\frac{9}{10^{19}+1}>\frac{9}{10^{20}+1}\)

=> 10A >10B

=> A > B

7 tháng 8 2018

Bài 1:

a)  \(x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)

\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)

\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(x-10\cdot\frac{4}{55}=\frac{3}{11}\)

\(x-\frac{8}{11}=\frac{3}{11}\)

\(x=1\)

b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)

\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)

\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)

\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

=> x + 1 =18

x = 17

bài 2 ko bk lm, xl nha

7 tháng 8 2018

mk cảm ơn bn nha

26 tháng 8 2020

a) Ta có : \(\frac{-60}{12}=-5=-\frac{25}{5}\)

\(-0,8=-\frac{8}{10}=-\frac{4}{5}\)

Mà -25 < -4 nên \(\frac{-25}{5}< \frac{-4}{5}\)=> \(\frac{-60}{12}< -0,8\)

b) Ta có : \(\frac{2020}{2019}=1+\frac{1}{2019}\)

\(\frac{2021}{2020}=1+\frac{1}{2020}\)

Vì \(\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2020}{2019}>\frac{2021}{2020}\)

c) \(\frac{10^{2018}+1}{10^{2019}+1}=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)(1)

\(\frac{10^{2019}+1}{10^{2020}+1}=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+10}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)(2)

Đến đây tự so sánh rồi nhé

Ta luôn có nếu a>0; b>0 thì \(\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Áp dụng vào bài toán ta thấy 1011-1 > 0 và 1012-1 > 0 nên

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)

 Vậy A < B

Xin lỗi bn nhé bài toán phụ phía trên đang còn 1 đk nữa là a<b

13 tháng 1 2018

\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)

Vậy A > B

13 tháng 1 2018

Áp dụng bất đẳng thức :

\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)

Ta có :

\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)

\(\Leftrightarrow B< A\)

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)