K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

a, \(A=2^0+2^1+2^2+...+2^{2010}\)

\(=>2A=2^1+2^2+2^3+...+2^{2011}\)

\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

\(=>2A=2^{2011}-2^0=2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(=>A=B\)

30 tháng 11 2019

a) Ta có : A=1+2+22+...+22010

              2A=2+22+23+...+22011

\(\Rightarrow\)  2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)

\(\Rightarrow\)       A=22011-1

Mà B=22011-1

\(\Rightarrow\)A=B

Vậy A=B.

b) Ta có : A=2009.2011

               B=20102=2010.2010

\(\Rightarrow\)A=2009.2010+2009

         B=2009.2010+2010

Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010

hay A<B

Vậy A<B.

18 tháng 11 2021

\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)

\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)

\(\Rightarrow A=2^{2011}-1=B\)

\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)

 

18 tháng 11 2021

\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)

\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)

14 tháng 11 2023

A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰

⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹

⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)

= 2²⁰¹¹ - 2⁰

= 2²⁰¹¹ - 1

= B

Vậy A = B

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

2 tháng 12 2019

a/ \(2A=2+2^2+2^3+2^4+...+2^{2011}\)

\(A=2A-A=2^{2011}-2^0=2^{2011}-1=B\)

b/ \(A=2009.2011=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B=2010^2\)

c/ 

\(5^{36}=\left(5^3\right)^{12}=125^{12}\)

\(11^{24}=\left(11^2\right)^{12}=121^{12}\)

\(\Rightarrow11^{24}=121^{12}< 125^{12}=5^{36}\)

d/ 

\(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}>5^{20}=625^5\)

e/

\(3^{2n}=\left(3^2\right)^n=9^n\)

\(2^{3n}=\left(2^3\right)^n=8^n< 9^n=3^{2n}\)

f/

\(6.5^{22}>5.5^{22}=5^{23}\)

g/

\(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

\(\Rightarrow333^{444}>444^{333}\)

13 tháng 7 2023

a) \(2^x=16=2^4\Rightarrow x=4\)

b) \(x^3=27=3^3\Rightarrow x=3\)

c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)

d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)

\(\Rightarrow x=6\) hay \(x=-2\)

 

13 tháng 7 2023

a) \(2^{300}=2^{3.100}=8^{100}\)

\(3^{200}=3^{2.100}=9^{100}\)

vì \(8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(3^{500}=3^{5.100}=243^{100}\)

\(7^{300}=7^{3.100}=343^{100}\)

vì \(243^{100}< 343^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

 

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B