K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2015

   (a+1)(a+2)(a+3)-a(a+1)(a+2)

=(a+1)(a+2)(a+3-a)

=3(a+1)(a+2)

DD
21 tháng 3 2022

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{999}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{999}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)

\(A=1-\frac{1}{2^{1000}}< 1=B\)

21 tháng 3 2022

`Answer:`

Đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)

Ta thấy:

\(\frac{1}{1.2}>\frac{1}{2^2}\)

\(\frac{1}{2.3}>\frac{1}{2^3}\)

\(\frac{1}{3.4}>\frac{1}{2^4}\)

...

\(\frac{1}{999.1000}>\frac{1}{2^{1000}}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)

\(\Rightarrow A< 1-\frac{1}{1000}\)

Mà \(\frac{1}{1000}>0\)

\(\Rightarrow1-\frac{1}{1000}< 1\)

\(\Rightarrow C< B\)

\(\Rightarrow A< C< B\)

\(\Rightarrow A< B\)

29 tháng 3 2017

ko bit

29 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

......................

\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}< 1\)

Vậy A < 1

11 tháng 9 2017

Ta có:

\(2A=2+2^2+2^3+...+2^{101}\)

=>\(2A-A=\left(2+2^2+..+2^{101}\right)-\left(1+2+2^2+..+2^{100}\right)\)

=>\(A=2^{101}-1\)

\(2^{101}-1>2^{100}-1\) nên A>B

Vậy A>B

11 tháng 9 2017

Vì A có 2100 và được cộng thêm, B có 2100 phải trừ 1 nên A > B.

ngắn gọn thôi

28 tháng 3 2017

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

=>\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\right)\)

=>\(A=2-\frac{1}{2^{2013}}< 2\)

Vậy A<2

12 tháng 10 2018

Ta có:\(A=1+2+2^2+2^3+....+2^{2017}.\)

\(\Rightarrow2A=2^1+2^2+2^3+2^4+....+2^{2018}\)

\(\Rightarrow2A-A=\left(2^1+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2^1+2^2+2^3+...+2^{2017}\right)\)

\(\Rightarrow A=2^{2018}-1\)

\(\Rightarrow A=B\)