K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

có :

\(B=\frac{10^{2015}+1}{10^{2014}+1}>1\)

\(\Rightarrow\frac{10^{2015}+1}{10^{2014}+1}>\frac{10^{2015}+1+9}{10^{2014}+1+9}\)        \(=\frac{10^{2015}+10}{10^{2014}+10}=\frac{10.\left(10^{2014}+1\right)}{10.\left(10^{2013}+1\right)}\)

\(=\frac{10^{2014}+1}{10^{2013}+1}=A\)

\(\Rightarrow B>A\)

 Vậy B > A

k cho mk nhé

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}=\frac{10^{2014}+10}{10^{2015}+10}=\frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2013}+1}{10^{2014}+1}=A\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

áp dụng tính chất

nếu a/b>1thì a/b<(a+n)/(b+n)

=)))))))))))))))))

12 tháng 2 2018

Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)

\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)

\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)

\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)

\(\Rightarrow B< A\)

Vậy A > B

12 tháng 2 2018

Các bn giúp mình vơi mình đang cần lắm 

25 tháng 1 2017

k minh minh giai cho

25 tháng 1 2017

gIẢI ĐI

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

28 tháng 3 2018

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

20 tháng 4 2019

\(A=\frac{10^{2012}+1}{10^{2013}+1}\)

\(10A=\frac{10\cdot\left[10^{2012}+1\right]}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

\(B=\frac{10^{2013}+1}{10^{2014}+1}\)

\(10B=\frac{10\cdot\left[10^{2013}+1\right]}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

Mà \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)

Nên \(10A>10B\)

Hay \(A>B\)

Vậy : A > B